Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of mesoporous size and structure on heat transport characteristics of mixed nitrate

Mao Rui Yang Qi-Rong Li Zhao-Ying Yan Chen-Xuan He Zhuo-Ya

Citation:

Influence of mesoporous size and structure on heat transport characteristics of mixed nitrate

Mao Rui, Yang Qi-Rong, Li Zhao-Ying, Yan Chen-Xuan, He Zhuo-Ya
PDF
HTML
Get Citation
  • The effects of mesoporous size and structure on the solidification characteristics of solar salt are simulated by molecular dynamics (MD). The mixed nitrate model with different scales and two structures is established by using Material Studio software, and the model is applied to the Lammps software package for simulation calculation. The changes of freezing point, supercooling, and phase transformation latent heat are summarized. The micro mechanism of solidification characteristics of nano solar salt is analyzed by radial distribution function, potential energy temperature curve and Gibbs free energy theory. The results show that the freezing point of solar salt first increases and then decreases with the increase of nanopore scale. The nanowire structure will also increase the phase transition temperature on the same scale, and the phase transition points of the two eventually tend to be stable with the increase of scale. The supercooling of solar salt decreases with the increase of mesoporous scale, but there is an abnormal increase. Under the two different structures, the solidification enthalpy gradually decreases with the increase of scale, and the phase transition latent heat of nanowire solar salt is 30%–37% higher than that of nanoparticle structure on the same scale.
      Corresponding author: Yang Qi-Rong, luyingyi125@163.com
    • Funds: Project supported by Start-up Funding for Youth Research Excellence of Qingdao University, China (Grant No. QDPYHT-5-065).
    [1]

    Jiang Z, Leng G, Ye F, Ge Z, Liu C, Wang L 2015 Energy Convers. Manage. 106 165Google Scholar

    [2]

    Alehosseini E, Jafari S. M. 2019 Trends Food Sci. Tech. 91 116Google Scholar

    [3]

    Umair M M, Zhang Y, Zhang S, Tang B 2019 Applied Energy 235 846Google Scholar

    [4]

    Chen X, Gao H, Yang M, Xing L, Dong W, Li A 2019 Energy Storage Mater. 18 349Google Scholar

    [5]

    冯妍卉, 冯黛丽, 张欣欣 2019 介孔复合材料的相变及热输运特性 (北京: 科学出版社) 第110—113页

    Feng Y H, Feng D L, Zhang X X 2019 Phase Transition and Heat Transport Properties of Mesoporous Composites (Beijing: Science Press) pp110–113 (in Chinese)

    [6]

    Chen X, Tang Z, Chang Y, Gao H, Lv J 2020 iScience 23 101606Google Scholar

    [7]

    Qian T T, Li J H, Xin M, Fan B 2018 ACS Sustain. Chem. Eng. 6 897Google Scholar

    [8]

    Xiao, C, Hg A, Lx A, Wd A, Al A, Pc B 2019 Energy Storage Mater. 18 280Google Scholar

    [9]

    Huang, X, Liu Z, Xia W, Zou R, Han R P S 2014 J. Mater. Chem. A 3 1935Google Scholar

    [10]

    袁思伟, 冯妍卉, 王鑫, 张欣欣 2014 物理学报 63 014402Google Scholar

    Yuan S W, Feng Y H, Wang X, Zhang X X 2014 Acta Phys. Sin. 63 014402Google Scholar

    [11]

    Feng D, Feng Y, Qiu L, Li P, Zang Y, Zou H 2019 Renew. Sust. Energ. Rev. 109 578Google Scholar

    [12]

    Lewis L J, Jensen P, Barrat J L 1997 Mrs Proceedings 56.4 2248-2257Google Scholar

    [13]

    毋志民, 王新强 2006 原子与分子物理学报 23 167Google Scholar

    Wu Z M, Wang X Q 2006 Journal of Atomic and Molecular Physics 23 167Google Scholar

    [14]

    Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518Google Scholar

    [15]

    Kang J W, Hwang H J 2003 Comp. Mater. Sci. 27 305Google Scholar

    [16]

    Wen Y H, Zhu Z Z, Zhu R, Shao G F 2005 Physica E: Low-Dimensional Systems and Nanostructures 25 47

    [17]

    Goitandia A M, Beobide G, Aranzabe E, Aranzabe A 2015 Sol. Energ. Mat. Sol. C. 134 318Google Scholar

    [18]

    Nakano K, Masuda Y, Daiguji H 2015 J. Phys. Chem. C 119 4769Google Scholar

    [19]

    Zou T, X Liang, Wang S, Gao X, Fang, Y 2020 Micropor. Mesopor. Mater. 305 110403Google Scholar

    [20]

    Zhang P, Xiao X, Ma Z W 2016 Appl. Energy 165 472Google Scholar

    [21]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第212—220页

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) pp212–220 (in Chinese)

    [22]

    何卓亚, 杨启容, 李昭莹, 毛蕊, 王力伟, 闫晨宣 2022 物理学报 71 030503Google Scholar

    He Z Y, Yang Q R, Li Z Y, Mao R, Wang L W, Yan C X 2022 Acta Phys. Sin. 71 030503Google Scholar

    [23]

    Anagnostopoulos A, Alexiadis A, Ding Y 2019 Sol. Energ. Mater. Sol. C 200 109897

    [24]

    Hu G J, Cao B Y 2013 J. Appl. Phys. 114 96Google Scholar

    [25]

    吴晨光, 李蓓 2022 复合材料学报 32 1Google Scholar

    [26]

    Karasawa N, Goddard WA 1992 Macromolecules 25 7268Google Scholar

    [27]

    Pan G, Ding J, Wang W L 2016 Int. J. Heat Mass Tran. 103 417Google Scholar

    [28]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 385Google Scholar

    [29]

    Zhang C, Chen Y, Yang L, Shi M 2011 Int. J. Heat Mass Transfer 54 4770Google Scholar

    [30]

    Li P T, Yang Y Q, Zhang W, Luo X, Jin N, Liu G 2016 RSC Advances 6 54763Google Scholar

    [31]

    李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞 2022 物理学报 71 016101Google Scholar

    Li C, Hou Z Y, Niu Y, Gao Q H, Wang Z, Wang J G, Zou P F 2022 Acta Phys. Sin 71 016101Google Scholar

    [32]

    Nicole P, Thomas B, Claudia M, Markus E, Antje W 2015 Beilstein J. Nanotech. 6 1487Google Scholar

    [33]

    Danneman D M, Johansen J B, Furbo S 2016 Sol. Energ. Mater. Sol. C. 145 287Google Scholar

    [34]

    Kibria M A, Anisur M R, Mahfuz M H, Saidur R, Metselaar I 2015 Energy Convers. Manage. 95 69Google Scholar

    [35]

    Al-Shannaq R, Kurdi J, Al-Muhtaseb S, Dickinson M, Farid M 2015 Energy 87 654

    [36]

    Song Z, Deng Y, Li J, Nian H 2018 Mater. Res. Bull. 102 203Google Scholar

    [37]

    Cao F, Bao Y 2014 Appl. Energy 113 1512Google Scholar

    [38]

    Fang G, Hui L, Fan Y, Xu L, Wu S 2009 Chem. Eng. J. 153 217Google Scholar

    [39]

    Wei L L, Kenichi, Ohsasa 2010 ISIJ Int. 50 1265Google Scholar

    [40]

    Sun J, Simon S L 2007 Thermochim. Acta 463 32Google Scholar

    [41]

    Wang W, Zhong Y, Li D, Wang P, Cai Y, Duan Z 2015 J. Electr. Mater. 44 4920Google Scholar

    [42]

    Saranprabhu M K, Rajan K S 2019 Renew. Energy 141 451Google Scholar

    [43]

    Pan K, Li Y, Zhao Q, Zhang S 2018 JOM 71 737Google Scholar

    [44]

    Li Y 2018 Ph. D. Dissertation (Zhengzhou: Zhengzhou University) (in Chinese) [李扬 2018 博士学位论文 (郑州: 郑州大学)]

    [45]

    Eryürek M, Güven 2007 Physica A:Stat. Mech. Appl. 377 514Google Scholar

  • 图 1  NaNO3和KNO3

    Figure 1.  NaNO3 and KNO3

    图 2  太阳盐模型 (a) 460; (b) 920; (c) 1380; (d) 1840; (e) 2300; (f) 2760; (g) 460 (纳米线); (h) 920 (纳米线)

    Figure 2.  Solar salt model: (a) 460; (b) 920; (c) 1380; (d) 1840; (e) 2300; (f) 2760; (g) 460 molecular number (nanowire); (h) 920 molecular number (nanowire).

    图 3  离子数为2760的太阳盐的均方位移和自扩散系数 (a) 均方位移; (b) 自扩散系数

    Figure 3.  Mean square displacement and self diffusion coefficient of solar salt with ion number 2760: (a) Mean square displacement; (b) self diffusion coefficient.

    图 4  太阳盐相变潜热

    Figure 4.  Latent heat of solar salt phase transition

    图 5  不同尺度下K+-Na+径向分布函数 (a) 460; (b) 1380; (c) 1840; (d) 2300

    Figure 5.  Radial distribution function of K+-Na+ at different temperatures: (a) 460; (b) 1380; (c) 1840; (d) 2300

    图 6  460分子数下不同冷却速率K+-Na+径向分布函数 (a) 0.1 K/ps; (b) 0.5 K/ps

    Figure 6.  Radial distribution function of K+-Na+ at different cooling rates at 460 molecular numbers: (a) 0.1 K/ps; (b) 0.5 K/ps

    图 7  1380分子数下不同冷却速率K+-Na+径向分布函数 (a) 0.1 K/ps; (b) 0.5 K/ps

    Figure 7.  Radial distribution function of K+-Na+ at different cooling rates at 1380 molecular numbers: (a) 0.1 K/ps; (b) 0.5 K/ps

    图 8  不同尺度下纳米线太阳盐K+-Na+径向分布函数 (a) 460; (b) 920

    Figure 8.  Radial distribution function of nanowire solar salt at different scales of K+-Na+: (a) 460; (b) 920

    图 9  太阳盐降温曲线 (a) $-H/(R_{\rm g}T^2)$曲线; (b) 吉布斯自由能随温度变化曲线

    Figure 9.  Cooling curve of solar salt: (a) $ -H/(R_{\rm g}T^2) $ curve; (b) Gibbs free energy versus temperature

    图 10  势能-温度曲线 (a) 460分子数升降温曲线; (b) 不同尺度纳米粒子降温曲线; (c) 不同尺度纳米线降温曲线; (d) 不同结构降温曲线

    Figure 10.  Potential energy-temperature curve: (a) 460 molecular number rise and drop temperature curve; (b) cooling curves of nanoparticles with different scales; (c) cooling curves of nanowires with different scales; (d) cooling curves of different structures

    表 1  太阳盐(w (NaNO3)∶w (KNO3) = 6∶4)中NaNO3和KNO3的离子数[22]

    Table 1.  Ion numbers of NaNO3 and KNO3 in solar salts (w (NaNO3) : w (KNO3) = 6∶4)[22]

    离子数种类尺度/nm
    Na+K+NO2–
    4606032922765
    920120641845526—7
    1380180962768287—8
    184024012836811048
    230030016046013809—10
    2760360192552165610
    DownLoad: CSV

    表 2  太阳盐复合材料势函数参数[24,25]

    Table 2.  Potential parameters of solor salt composites[24,25].

    AtomQ/eE/(10–3 eV)σ
    Na1.006.63730002.407
    K1.004.3360003.188
    N0.954.0175093.431
    O–0.653.4691293.285
    DownLoad: CSV

    表 3  模拟参数

    Table 3.  Simulation parameters.

    原子数460, 920, 1380, 1840, 2300, 2760
    时间步长/fs1
    压强/(105 Pa)1
    系综NPT
    冷却速率/(K·ps–1)0.1, 0.5
    DownLoad: CSV

    表 4  不同尺度下的太阳盐的相变温度

    Table 4.  Phase transition temperature of solar salts at different scales.

    离子数
    4609201380184023002760552011040
    熔点/K493493503518508492493492
    凝固点/K463483473503490483478476
    过冷度/K301030151291516
    DownLoad: CSV

    表 5  纳米线结构太阳盐的相变温度

    Table 5.  Phase transition temperature of nanostructured solar salts

    离子数
    460920
    熔点/K528548
    凝固点/K518543
    过冷度/K105
    DownLoad: CSV

    表 6  不同尺度下的太阳盐的相变潜热

    Table 6.  Phase transition latent heat of solar salts at different scales.

    离子数
    4609201380184023002760
    相变潜热
    /(kJ·kg–1)
    108.75109.39110.12112.25114.69117.57
    DownLoad: CSV

    表 7  纳米线结构太阳盐的相变潜热

    Table 7.  Phase transition latent heat of nanostructured solar salts.

    离子数
    460920
    相变潜热/(kJ·kg–1)141.39150.64
    DownLoad: CSV
  • [1]

    Jiang Z, Leng G, Ye F, Ge Z, Liu C, Wang L 2015 Energy Convers. Manage. 106 165Google Scholar

    [2]

    Alehosseini E, Jafari S. M. 2019 Trends Food Sci. Tech. 91 116Google Scholar

    [3]

    Umair M M, Zhang Y, Zhang S, Tang B 2019 Applied Energy 235 846Google Scholar

    [4]

    Chen X, Gao H, Yang M, Xing L, Dong W, Li A 2019 Energy Storage Mater. 18 349Google Scholar

    [5]

    冯妍卉, 冯黛丽, 张欣欣 2019 介孔复合材料的相变及热输运特性 (北京: 科学出版社) 第110—113页

    Feng Y H, Feng D L, Zhang X X 2019 Phase Transition and Heat Transport Properties of Mesoporous Composites (Beijing: Science Press) pp110–113 (in Chinese)

    [6]

    Chen X, Tang Z, Chang Y, Gao H, Lv J 2020 iScience 23 101606Google Scholar

    [7]

    Qian T T, Li J H, Xin M, Fan B 2018 ACS Sustain. Chem. Eng. 6 897Google Scholar

    [8]

    Xiao, C, Hg A, Lx A, Wd A, Al A, Pc B 2019 Energy Storage Mater. 18 280Google Scholar

    [9]

    Huang, X, Liu Z, Xia W, Zou R, Han R P S 2014 J. Mater. Chem. A 3 1935Google Scholar

    [10]

    袁思伟, 冯妍卉, 王鑫, 张欣欣 2014 物理学报 63 014402Google Scholar

    Yuan S W, Feng Y H, Wang X, Zhang X X 2014 Acta Phys. Sin. 63 014402Google Scholar

    [11]

    Feng D, Feng Y, Qiu L, Li P, Zang Y, Zou H 2019 Renew. Sust. Energ. Rev. 109 578Google Scholar

    [12]

    Lewis L J, Jensen P, Barrat J L 1997 Mrs Proceedings 56.4 2248-2257Google Scholar

    [13]

    毋志民, 王新强 2006 原子与分子物理学报 23 167Google Scholar

    Wu Z M, Wang X Q 2006 Journal of Atomic and Molecular Physics 23 167Google Scholar

    [14]

    Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518Google Scholar

    [15]

    Kang J W, Hwang H J 2003 Comp. Mater. Sci. 27 305Google Scholar

    [16]

    Wen Y H, Zhu Z Z, Zhu R, Shao G F 2005 Physica E: Low-Dimensional Systems and Nanostructures 25 47

    [17]

    Goitandia A M, Beobide G, Aranzabe E, Aranzabe A 2015 Sol. Energ. Mat. Sol. C. 134 318Google Scholar

    [18]

    Nakano K, Masuda Y, Daiguji H 2015 J. Phys. Chem. C 119 4769Google Scholar

    [19]

    Zou T, X Liang, Wang S, Gao X, Fang, Y 2020 Micropor. Mesopor. Mater. 305 110403Google Scholar

    [20]

    Zhang P, Xiao X, Ma Z W 2016 Appl. Energy 165 472Google Scholar

    [21]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第212—220页

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) pp212–220 (in Chinese)

    [22]

    何卓亚, 杨启容, 李昭莹, 毛蕊, 王力伟, 闫晨宣 2022 物理学报 71 030503Google Scholar

    He Z Y, Yang Q R, Li Z Y, Mao R, Wang L W, Yan C X 2022 Acta Phys. Sin. 71 030503Google Scholar

    [23]

    Anagnostopoulos A, Alexiadis A, Ding Y 2019 Sol. Energ. Mater. Sol. C 200 109897

    [24]

    Hu G J, Cao B Y 2013 J. Appl. Phys. 114 96Google Scholar

    [25]

    吴晨光, 李蓓 2022 复合材料学报 32 1Google Scholar

    [26]

    Karasawa N, Goddard WA 1992 Macromolecules 25 7268Google Scholar

    [27]

    Pan G, Ding J, Wang W L 2016 Int. J. Heat Mass Tran. 103 417Google Scholar

    [28]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 385Google Scholar

    [29]

    Zhang C, Chen Y, Yang L, Shi M 2011 Int. J. Heat Mass Transfer 54 4770Google Scholar

    [30]

    Li P T, Yang Y Q, Zhang W, Luo X, Jin N, Liu G 2016 RSC Advances 6 54763Google Scholar

    [31]

    李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞 2022 物理学报 71 016101Google Scholar

    Li C, Hou Z Y, Niu Y, Gao Q H, Wang Z, Wang J G, Zou P F 2022 Acta Phys. Sin 71 016101Google Scholar

    [32]

    Nicole P, Thomas B, Claudia M, Markus E, Antje W 2015 Beilstein J. Nanotech. 6 1487Google Scholar

    [33]

    Danneman D M, Johansen J B, Furbo S 2016 Sol. Energ. Mater. Sol. C. 145 287Google Scholar

    [34]

    Kibria M A, Anisur M R, Mahfuz M H, Saidur R, Metselaar I 2015 Energy Convers. Manage. 95 69Google Scholar

    [35]

    Al-Shannaq R, Kurdi J, Al-Muhtaseb S, Dickinson M, Farid M 2015 Energy 87 654

    [36]

    Song Z, Deng Y, Li J, Nian H 2018 Mater. Res. Bull. 102 203Google Scholar

    [37]

    Cao F, Bao Y 2014 Appl. Energy 113 1512Google Scholar

    [38]

    Fang G, Hui L, Fan Y, Xu L, Wu S 2009 Chem. Eng. J. 153 217Google Scholar

    [39]

    Wei L L, Kenichi, Ohsasa 2010 ISIJ Int. 50 1265Google Scholar

    [40]

    Sun J, Simon S L 2007 Thermochim. Acta 463 32Google Scholar

    [41]

    Wang W, Zhong Y, Li D, Wang P, Cai Y, Duan Z 2015 J. Electr. Mater. 44 4920Google Scholar

    [42]

    Saranprabhu M K, Rajan K S 2019 Renew. Energy 141 451Google Scholar

    [43]

    Pan K, Li Y, Zhao Q, Zhang S 2018 JOM 71 737Google Scholar

    [44]

    Li Y 2018 Ph. D. Dissertation (Zhengzhou: Zhengzhou University) (in Chinese) [李扬 2018 博士学位论文 (郑州: 郑州大学)]

    [45]

    Eryürek M, Güven 2007 Physica A:Stat. Mech. Appl. 377 514Google Scholar

  • [1] Wang Ji-Kang, Li Hua, Peng Yu-Fei, Li Xiao-Yan, Zhang Xin-Yu. Dynamic characteristics of proton exchange membrane fuel cell on a multiple time scale. Acta Physica Sinica, 2022, 71(15): 158802. doi: 10.7498/aps.71.20212015
    [2] He Zhuo-Ya, Yang Qi-Rong, Li Zhao-Ying, Mao Rui, Wang Li-Wei, Yan Chen-Xuan. Influence of mesoporous size and structure on heat transport characteristics of mixed nitrate. Acta Physica Sinica, 2022, 71(3): 030503. doi: 10.7498/aps.71.20211276
    [3] Ma Rui-Xuan, Wang Yi-Min, Zhang Shu-Hai, Wu Cong-Hai, Wang Xun-Nian. Numerical investigation of scale effect on acoustic scattering by vortex. Acta Physica Sinica, 2021, 70(10): 104301. doi: 10.7498/aps.70.20202206
    [4] Wang Yi-Min, Ma Rui-Xuan, Wu Cong-Hai, Luo Yong, Zhang Shu-Hai. Numerical study on spatial scale characteristics of sound scattering by a static isentropic vortex. Acta Physica Sinica, 2021, 70(19): 194302. doi: 10.7498/aps.70.20202232
    [5] Hou Wang, Mei Feng-Hua, Cheng Guo-Jun, Deng Xi-Wen. An evaluation criterion of infrared image complexity based on background optimal filter scale. Acta Physica Sinica, 2015, 64(23): 234202. doi: 10.7498/aps.64.234202
    [6] Cao Yong-Qing, Lin Xin, Wang Zhi-Tai, Wang Li-Lin, Huang Wei-Dong. Microstructural evolution of laser surface remelting remolten Ni-28 wt%Sn alloy under liquid nitrogen cooling. Acta Physica Sinica, 2015, 64(10): 108103. doi: 10.7498/aps.64.108103
    [7] Meng Guang-Hui, Lin Xin. Characteristic scale selection of lamellar spacings in binary eutectic solidification. Acta Physica Sinica, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [8] Zhang Yu, Zhang Xiao-Juan, Fang Guang-You. A data inversion method for electromagnetic scattering from large-scale layered medium. Acta Physica Sinica, 2013, 62(4): 044204. doi: 10.7498/aps.62.044204
    [9] Bian Bao-Min, Lai Xiao-Ming, Yang Ling, Li Zhen-Hua, He An-Zhi. Variable space scale factor spherical coordinates and time-space metric. Acta Physica Sinica, 2012, 61(8): 080401. doi: 10.7498/aps.61.080401
    [10] Zhang Yu, Zhang Xiao-Juan, Fang Guang-You. Investigation on the characteristics of electromagnetic scattering from large-scale rough surface of layered medium. Acta Physica Sinica, 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [11] Huang Qi-Sen, Liu Li, Wei Xiu-Xun, Li Jin-Fu. Solidification behaviors of undercooled Ni-P alloys. Acta Physica Sinica, 2012, 61(16): 166401. doi: 10.7498/aps.61.166401
    [12] Zheng Gui-Bo, Jin Ning-De. Multiscale entropy and dynamic characteristics of two-phase flow patterns. Acta Physica Sinica, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [13] He Liang, Du Lei, Zhuang Yi-Qi, Li Wei-Hua, Chen Jian-Ping. Multiscale entropy complexity analysis of metallic interconnection electromigration noise. Acta Physica Sinica, 2008, 57(10): 6545-6550. doi: 10.7498/aps.57.6545
    [14] Yin Han-Yu, Lu Xiao-Yu. Rapid solidification of undercooled Cu60Sn30Pb10 monotectic alloy. Acta Physica Sinica, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [15] Mei Ce-Xiang, Ruan Ying, Dai Fu-Ping, Wei Bing-Bo. Phase constitution and solidification characteristics of undercooled Ag-Cu-Ge ternary eutectic alloy. Acta Physica Sinica, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [16] Gong Zhi-Qiang, Feng Guo-Lin. Analysis of similarity of several proxy series based on nonlinear analysis method. Acta Physica Sinica, 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [17] Zeng Hua-Rong, Yu Han-Feng, Chu Rui-Qing, Li Guo-Rong, Yin Qing-Rui, Tang Xin-Gui. Field-induced displacement properties of nanoscale domain structure in PZT thin film. Acta Physica Sinica, 2005, 54(3): 1437-1441. doi: 10.7498/aps.54.1437
    [18] Yi Xu-Nong, Hu Wei, Luo Hai-Lu, Zhu Jing. Study of small-scale self-focusing in laser beams by high-order contrast. Acta Physica Sinica, 2005, 54(2): 749-754. doi: 10.7498/aps.54.749
    [19] Dong Rui-Xin, Yan Xun-Ling, Pang Xiao-Feng, Liu Sheng-Gang. The nonlinear characteristics study of the effect of salt on denaturation transi tion of DNA. Acta Physica Sinica, 2003, 52(12): 3197-3202. doi: 10.7498/aps.52.3197
    [20] Liu Hai-Feng, Dai Zheng-Hua, Chen Feng, Gong Xin, Yu Zun-Hong. . Acta Physica Sinica, 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
Metrics
  • Abstract views:  4998
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  25 December 2021
  • Accepted Date:  10 February 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回