Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional photonic crystal waveguide 1×5 beam splitter reversely designed by downhill-simplex algorithm

Ke Hang Li Pei-Li Shi Wei-Hua

Citation:

Two-dimensional photonic crystal waveguide 1×5 beam splitter reversely designed by downhill-simplex algorithm

Ke Hang, Li Pei-Li, Shi Wei-Hua
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Beam splitter, whose main function is to achieve the splitting, combining and routing of optical signals, is an important component of photonic integrated circuits, passive optical network and other fields. Compared with the conventional beam splitter, photonic crystal beam splitter, which has the virtues of smaller size and higher transmission efficiency, is very suitable for high-density and large-scale integration. The traditional control variable method often used in the optimal design of photonic crystal beam splitter is time-consuming and inefficient. When parameter variables are large, it is difficult for beam splitter to achieve the optimal splitting performance. In addition, it is hard to realize flexible design of beam splitting ratio when optimizing multi-channel photonic crystal beam splitter by this method. In this paper, a novel photonic crystal 1×5 beam splitter, in which two special Y-junction waveguides are introduced into a completely two-dimensional square lattice silicon, is proposed and optimally designed by using downhill-simplex algorithm. Firstly, to determine the optimization range of each variable, the influences of the radius of the dielectric rod in the coupling region and the radius and the lateral offset of the regulating dielectric rod in the center of the two Y-junction waveguides on the five output ports of the 1×5 beam splitter are explored respectively by the plane wave expansion method and finite difference time domain method. The results show that the optical energy coupled from the main waveguide W1 to the upper Y-junction waveguide and lower Y-junction waveguide can be controlled by optimizing the radius of the dielectric rod in the coupling region. The transmittance of the five output ports can be controlled in proportion by optimizing the lateral offset of the regulating dielectric rods. The total transmittance of the five output ports can be improved, and the output of each port can be adjusted by optimizing the radius of the regulating dielectric rod. Then, according to the specific target of the splitting ratio, using downhill-simplex algorithm, the 1×5 beam splitter with different splitting ratio can be reversely designed by optimizing the radius of the coupling dielectric rod and the radius and the lateral offset of the regulating dielectric rod within the selected optimization range. The total transmittance of the 1×5 beam splitter is above 99%, the additional loss is less than 0.044 dB, and the response time is less than 1ps. Besides, to determine the allowable error range of each optimization variable in actual processing, the machining error of the 1×5 beam splitter is analyzed, which provides a theoretical reference for fabricating the device. Owing to the advantages of flexible splitting ratio design, high optimization efficiency, small size and excellent performance, the proposed 1×5 beam splitter will have broad application prospects in the field of photonic integrated circuits and so on.
      Corresponding author: Li Pei-Li, lipl@njupt.edu.cn
    [1]

    于天宝 2007 博士学位论文 (杭州: 浙江大学)

    Yu T B 2007 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [2]

    Tao S H, Fang Q, Song J F, Yu M B, Lo G Q, Kwong D L 2008 Opt. Express 16 21456Google Scholar

    [3]

    Yao R K, Li H X, Zhang B H, Chen W W, Wang P J, Dai S X, Liu Y X, Li J, Li Y, Fu Q 2021 J. Lightwave Technol. 39 6253Google Scholar

    [4]

    Lin Z J, Shi W 2019 Opt. Express 27 14338Google Scholar

    [5]

    Chen H, Zou S Z, Yu H J, Lin X C 2015 IEEE Photon. Technol. Lett. 27 2527Google Scholar

    [6]

    Ferstl M, Hermerschmidt A, Dias D, Steingruber R 2004 J. Mod. Opt. 51 2125Google Scholar

    [7]

    Tahersima M H, Kojima K, Koike A T, Jha D, Wang B N, Lin C W, Parsons K 2019 Sci. Rep. 9 1368Google Scholar

    [8]

    左依凡, 李培丽, 栾开智, 王磊 2018 物理学报 67 034204Google Scholar

    Zuo Y F, Li P L, Luan K Z, Wang L 2018 Acta Phys. Sin. 67 034204Google Scholar

    [9]

    Hu J R, Li J S 2016 J. Infrared Millim. Te. 37 729Google Scholar

    [10]

    Singh S, Singh K 2017 Optik 145 495Google Scholar

    [11]

    Rakshitha M, Gandhi S I 2018 4th International Conference on Devices, Circuits and Systems Coimbatore, India, March 16–17, 2018 p25

    [12]

    刘凯柱 2020 硕士学位论文 (北京: 中央民族大学)

    Liu K Z 2020 M. S. Thesis (Beijing: Minzu University of China) (in Chinese)

    [13]

    金轶群, 文化锋, 李韵嘉, 王周益, 胡帆, 周华英, 施锋 2021 光电子·激光 32 281Google Scholar

    Jin Y Q, Wen H F, Li Y J, Wang Z Y, Hu F, Zhou H Y, Shi F 2021 J. Optoelectronics·Laser 32 281Google Scholar

    [14]

    Moumeni I, Labbani A 2021 Opt. Quant. Electron. 53 129Google Scholar

    [15]

    Nelder J A, Mead R 1965 Comput. J. 7 308Google Scholar

    [16]

    Chelouah R, Siarry P 2003 Eur. J. Oper. Res. 148 335Google Scholar

    [17]

    Su H L, Lan F C, He Y Y, Chen J Q 2020 Eng. Computation 37 1423Google Scholar

    [18]

    陈颖, 王文跃, 于娜 2014 物理学报 63 034205Google Scholar

    Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205Google Scholar

    [19]

    厉梦瑶, 徐光跃, 郑加金, 李培丽 2021 光电子·激光 32 799Google Scholar

    Li M Y, Xu G Y, Zheng J J, Li P L 2021 J. Optoelectronics·Laser 32 799Google Scholar

    [20]

    费宏明, 严帅, 徐瑜成, 林瀚, 武敏, 杨毅彪, 陈智辉, 田媛, 张娅敏 2020 物理学报 69 184214Google Scholar

    Fei H M, Yan S, Xu Y C, Lin H, Wu M, Yang Y B, Chen Z H, Tian Y, Zhang Y M 2020 Acta Phys. Sin. 69 184214Google Scholar

    [21]

    郗翔, 叶康平, 伍瑞新 2020 物理学报 69 154102Google Scholar

    Xi X, Ye K P, Wu R X 2020 Acta Phys. Sin. 69 154102Google Scholar

    [22]

    赵绚, 刘晨, 马会丽, 冯帅 2017 物理学报 66 114208Google Scholar

    Zhao X, Liu C, Ma H L, Feng S 2017 Acta Phys. Sin. 66 114208Google Scholar

    [23]

    Park H, Lee S 2020 ACS Photonics 7 1577Google Scholar

    [24]

    Hsieh M L, Chen S Y, Kaiser A, Yan Y J, Frey B, Bhat I, Dahal R, Bhattacharya S, John S, Lin S Y 2019 AIP Adv. 9 085206Google Scholar

  • 图 1  二维光子晶体1×5分束器结构图

    Figure 1.  Schematic of 1×5 beam splitter structure based on two-dimensional photonic crystal.

    图 2  完整二维正方晶格光子晶体 (a) 带隙图; (b) r = 0.2a时的能带结构图

    Figure 2.  Complete two-dimensional square lattices photonic: (a) Gap map; (b) energy band structure diagram of r = 0.2a

    图 3  输出端口透过率随耦合介质柱半径变化关系图

    Figure 3.  Relationship between the transmittance of the output ports and the radius of coupling dielectric rods.

    图 4  输出端口透过率随调控介质柱横向偏移量变化关系图

    Figure 4.  Relationship between the transmittance of the output ports and the lateral offset of regulating dielectric rods.

    图 5  输出端口透过率随调控介质柱半径变化关系图

    Figure 5.  Relationship between the transmittance of the output ports and the radius of regulating dielectric rods.

    图 6  基于DSA逆向设计1×5分束器流程图

    Figure 6.  Flow chart of reverse design of 1×5 beam splitter based on DSA.

    图 7  分光比为1∶1∶1∶1∶1的1×5分束器 (a) 稳态场强分布图; (b) 时域稳态响应图

    Figure 7.  1×5 beam splitter with a splitting ratio of 1∶1∶1∶1∶1∶ (a) Steady-state field intensity distribution diagram; (b) time domain steady state diagram.

    图 8  分光比为1∶1∶2∶1∶2的1×5分束器 (a) 稳态场强分布图; (b) 时域稳态响应图

    Figure 8.  1×5 beam splitter with a splitting ratio of 1∶1∶2∶1∶2∶ (a) Steady-state field intensity distribution diagram; (b) time domain steady state diagram.

    图 9  分光比为1∶1∶2∶1∶3的1×5分束器 (a) 稳态场强分布图; (b) 时域稳态响应图

    Figure 9.  1×5 beam splitter with a splitting ratio of 1∶1∶2∶1∶3∶ (a) Steady-state field intensity distribution diagram; (b) time domain steady state diagram.

    图 10  分光比为1∶1∶2∶1∶4的1×5分束器 (a) 稳态场强分布图; (b) 时域稳态响应图

    Figure 10.  1×5 beam splitter with a splitting ratio of 1∶1∶2∶1∶4∶ (a) Steady-state field intensity distribution diagram; (b) time domain steady state diagram.

    图 11  输出端口透过率随耦合介质柱半径偏差的变化关系

    Figure 11.  Relationship between the transmittance of the output ports and deviation of the radius of coupling dielectric rods.

    图 12  输出端口透过率随调控介质柱的横向偏移量偏差的变化关系图

    Figure 12.  Relationship between the transmittance of the output ports and deviation of the lateral offset of regulating dielectric rods.

    图 13  输出端口透过率随调控介质柱半径偏差的变化关系图

    Figure 13.  Relationship between the transmittance of the output ports and deviation of the radius of regulating dielectric rods.

  • [1]

    于天宝 2007 博士学位论文 (杭州: 浙江大学)

    Yu T B 2007 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [2]

    Tao S H, Fang Q, Song J F, Yu M B, Lo G Q, Kwong D L 2008 Opt. Express 16 21456Google Scholar

    [3]

    Yao R K, Li H X, Zhang B H, Chen W W, Wang P J, Dai S X, Liu Y X, Li J, Li Y, Fu Q 2021 J. Lightwave Technol. 39 6253Google Scholar

    [4]

    Lin Z J, Shi W 2019 Opt. Express 27 14338Google Scholar

    [5]

    Chen H, Zou S Z, Yu H J, Lin X C 2015 IEEE Photon. Technol. Lett. 27 2527Google Scholar

    [6]

    Ferstl M, Hermerschmidt A, Dias D, Steingruber R 2004 J. Mod. Opt. 51 2125Google Scholar

    [7]

    Tahersima M H, Kojima K, Koike A T, Jha D, Wang B N, Lin C W, Parsons K 2019 Sci. Rep. 9 1368Google Scholar

    [8]

    左依凡, 李培丽, 栾开智, 王磊 2018 物理学报 67 034204Google Scholar

    Zuo Y F, Li P L, Luan K Z, Wang L 2018 Acta Phys. Sin. 67 034204Google Scholar

    [9]

    Hu J R, Li J S 2016 J. Infrared Millim. Te. 37 729Google Scholar

    [10]

    Singh S, Singh K 2017 Optik 145 495Google Scholar

    [11]

    Rakshitha M, Gandhi S I 2018 4th International Conference on Devices, Circuits and Systems Coimbatore, India, March 16–17, 2018 p25

    [12]

    刘凯柱 2020 硕士学位论文 (北京: 中央民族大学)

    Liu K Z 2020 M. S. Thesis (Beijing: Minzu University of China) (in Chinese)

    [13]

    金轶群, 文化锋, 李韵嘉, 王周益, 胡帆, 周华英, 施锋 2021 光电子·激光 32 281Google Scholar

    Jin Y Q, Wen H F, Li Y J, Wang Z Y, Hu F, Zhou H Y, Shi F 2021 J. Optoelectronics·Laser 32 281Google Scholar

    [14]

    Moumeni I, Labbani A 2021 Opt. Quant. Electron. 53 129Google Scholar

    [15]

    Nelder J A, Mead R 1965 Comput. J. 7 308Google Scholar

    [16]

    Chelouah R, Siarry P 2003 Eur. J. Oper. Res. 148 335Google Scholar

    [17]

    Su H L, Lan F C, He Y Y, Chen J Q 2020 Eng. Computation 37 1423Google Scholar

    [18]

    陈颖, 王文跃, 于娜 2014 物理学报 63 034205Google Scholar

    Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205Google Scholar

    [19]

    厉梦瑶, 徐光跃, 郑加金, 李培丽 2021 光电子·激光 32 799Google Scholar

    Li M Y, Xu G Y, Zheng J J, Li P L 2021 J. Optoelectronics·Laser 32 799Google Scholar

    [20]

    费宏明, 严帅, 徐瑜成, 林瀚, 武敏, 杨毅彪, 陈智辉, 田媛, 张娅敏 2020 物理学报 69 184214Google Scholar

    Fei H M, Yan S, Xu Y C, Lin H, Wu M, Yang Y B, Chen Z H, Tian Y, Zhang Y M 2020 Acta Phys. Sin. 69 184214Google Scholar

    [21]

    郗翔, 叶康平, 伍瑞新 2020 物理学报 69 154102Google Scholar

    Xi X, Ye K P, Wu R X 2020 Acta Phys. Sin. 69 154102Google Scholar

    [22]

    赵绚, 刘晨, 马会丽, 冯帅 2017 物理学报 66 114208Google Scholar

    Zhao X, Liu C, Ma H L, Feng S 2017 Acta Phys. Sin. 66 114208Google Scholar

    [23]

    Park H, Lee S 2020 ACS Photonics 7 1577Google Scholar

    [24]

    Hsieh M L, Chen S Y, Kaiser A, Yan Y J, Frey B, Bhat I, Dahal R, Bhattacharya S, John S, Lin S Y 2019 AIP Adv. 9 085206Google Scholar

  • [1] Ju Xue-Wei, Zhang Lin-Feng, Huang Feng, Zhu Guo-Feng, Li Shu-Jin, Chen Yan-Qing, Wang Jia-Xun, Zhong Shun-Cong, Chen Ying, Wang Xiang-Feng. Reverse design and optimization of digital terahertz bandpass filters. Acta Physica Sinica, 2024, 73(6): 060702. doi: 10.7498/aps.73.20231584
    [2] Zhang Yi-Yi, Wei Xue-Ling, Nong Jie, Ma Han-Si, Ye Zi-Yang, Xu Wen-Jie, Zhang Zhen-Rong, Yang Jun-Bo. Ultra-compact In2Se3 tunable power splitter based on direct binary search algorithm. Acta Physica Sinica, 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [3] Wang Zhi-Peng, Wang Bing-Zhong, Liu Jin-Pin, Wang Ren. Inverse design method of microscatterer array for realizing scattering field intensity shaping. Acta Physica Sinica, 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [4] Inverse design method of microscatterer array for realizing scattering field intensity shaping. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200825
    [5] Ma Jing, Liu Dong-Dong, Wang Ji-Cheng, Feng Yan. Anisotropic polarization beam splitter based on metal slit array. Acta Physica Sinica, 2018, 67(9): 094102. doi: 10.7498/aps.67.20172292
    [6] Zuo Yi-Fan, Li Pei-Li, Luan Kai-Zhi, Wang Lei. Heterojunction polarization beam splitter based on self-collimation in photonic crystal. Acta Physica Sinica, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [7] Zhao Xuan, Liu Chen, Ma Hui-Li, Feng Shuai. Photonic crystal frequency band selecting and power splitting devices based on the energy coupling effect between waveguides. Acta Physica Sinica, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [8] Peng Hao, Shen Wei-Dong, Yang Chen-Ying, Zhang Yue-Guang, Liu Xu. Design and optimization of broadband polarization beam splitter made from a wave-structured multilayer film. Acta Physica Sinica, 2014, 63(13): 134212. doi: 10.7498/aps.63.134212
    [9] Liao Qing-Hua, Zhang Xuan, Xia Quan, Yu Tian-Bao, Chen Shu-Wen, Liu Nian-Hua. A design for all-optical switch and arbitrary proportion of energy output beam splitter. Acta Physica Sinica, 2013, 62(4): 044220. doi: 10.7498/aps.62.044220
    [10] Li Wen-Sheng, Luo Shi-Jun, Huang Hai-Ming, Zhang Qin, Fu Yan-Hua. The design of tank coating based on photonic crystal. Acta Physica Sinica, 2012, 61(16): 164102. doi: 10.7498/aps.61.164102
    [11] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Study on chromatic dispersion of beam splitter in spatially modulated Fourier transform spectrometer. Acta Physica Sinica, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [12] Kong Yan-Mei, Gao Chao-Qun, Jing Yu-Peng, Chen Da-Peng. The research of the air-sensitive sensor based on thephotonic crystal beam splitter. Acta Physica Sinica, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [13] Zhang Xuan, Liao Qing-Hua, Chen Shu-Wen, Hu Ping, Yu Tian-Bao, Liu Nian-Hua. Proposal of novel and efficient polarization beam splitter. Acta Physica Sinica, 2011, 60(10): 104215. doi: 10.7498/aps.60.104215
    [14] Chen He-Ming, Meng Qing. Design of high efficiency photonic crystal terahertz filter. Acta Physica Sinica, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [15] Tong Xing, Han Kui, Shen Xiao-Peng, Wu Qiong-Hua, Zhou Fei, Ge Yang, Hu Xiao-Juan. Equal intensity polarization-independent beam splitter based on photonic crystal self-collimation ring resonator. Acta Physica Sinica, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [16] Zhu Gui-Xin, Yu Tian-Bao, Chen Shu-Wen, Shi Zhe, Hu Shu-Juan, Lai Zhen-Quan, Liao Qing-Hua, Huang Yong-Zhen. A new way of uniform splitting of the optical power by directional coupling between the photonic crystal waveguides. Acta Physica Sinica, 2009, 58(2): 1014-1019. doi: 10.7498/aps.58.1014
    [17] Xi Li-Xia, Tang Xian-Feng, Wang Shao-Kang, Zhang Xiao-Guang. Design and optimization of phase regenerator with photonic crystal fiber. Acta Physica Sinica, 2009, 58(9): 6243-6247. doi: 10.7498/aps.58.6243
    [18] Shen Xiao-Peng, Han Kui, Li Hai-Peng, Shen Yi-Feng, Wang Zi-Yu. Polarization beam splitter for self-collimated beams in photonic crystals. Acta Physica Sinica, 2008, 57(3): 1737-1741. doi: 10.7498/aps.57.1737
    [19] Wang Ke, Zheng Wan-Hua, Ren Gang, Du Xiao-Yu, Xing Ming-Xin, Chen Liang-Hui. Design and optimization of photonic crystal coupling layer for bi-color quantum well infrared photodetectors. Acta Physica Sinica, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [20] Li Yan, Zheng Rui-Sheng, Feng Yu-Chun, Niu Han-Ben. Photonic band in quasi-fractal photonic crystal structure including idealized metal. Acta Physica Sinica, 2004, 53(9): 3205-3210. doi: 10.7498/aps.53.3205
Metrics
  • Abstract views:  5514
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  24 February 2022
  • Accepted Date:  17 March 2022
  • Available Online:  15 July 2022
  • Published Online:  20 July 2022

/

返回文章
返回