Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultra-compact In2Se3 tunable power splitter based on direct binary search algorithm

Zhang Yi-Yi Wei Xue-Ling Nong Jie Ma Han-Si Ye Zi-Yang Xu Wen-Jie Zhang Zhen-Rong Yang Jun-Bo

Citation:

Ultra-compact In2Se3 tunable power splitter based on direct binary search algorithm

Zhang Yi-Yi, Wei Xue-Ling, Nong Jie, Ma Han-Si, Ye Zi-Yang, Xu Wen-Jie, Zhang Zhen-Rong, Yang Jun-Bo
PDF
HTML
Get Citation
  • Power splitter with multi-mode interference coupler structure has many advantages, such as large bandwidth and better manufacturing robustness, and has received much attention for a long time. Conventional power beam splitters usually use algorithms or numerical simulation to achieve a single beam splitting ratio; if the circuit has the requirement for power, the structural parameters of the device need changing and recalculating. In order to improve the utilization rate of power splitter in photonic integrated circuit and meet various demands for different optical paths, an ultra-compact tunable power splitter based on phase change material In2Se3 with a 1×2 multimode interference coupler structure is proposed in this paper. The device consists of an input waveguide, a coupling region, and two output waveguides with a coupling region of only 2.4 μm× 3.6 μm in size, which contains several circular holes of the same size and is filled with SiO2. The number and location of circular holes in the coupling region are optimized by direct binary search algorithm, making the device achieve different power splitting ratios by using only the high refractive index contrast variation between the two crystalline states (α and β) of In2Se3 without changing any other structural parameter. In a wavelength range of 1540–1560 nm, three splitting ratios of 1∶1, 1∶1.5 and 1∶2 are achieved by this device, and the insertion losses of these three beam splitting ratios are less than 0.27, 0.13 and 0.17 dB, respectively. In addition, the robustness and balance of the device are analyzed and discussed, and compared with those of the power splitter of the same size designed by SOI platform and several power beam splitters reported in recent years, demonstrating the compact structure and simple regulation of this power splitter based on the phase change material In2Se3, its good robustness, and its possibility of application on photonic integrated circuits.
      Corresponding author: Zhang Zhen-Rong, zzr76@gxu.edu.cn ; Yang Jun-Bo, yangjunbo@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12272407, 62275269, 62275271), the National Key R & D Program of China (Grant No. 2022YFF0706005), and the Guangdong-Guangxi Joint Scientific Key Fund, China (Grant No. 2021GXNSFDA076001).
    [1]

    Zhu J B, Chao Q, Huang H Y, Zhao Y X, Li Y, Tao L, She X J, Liao H, Huang R, Zhu Z J, Liu X, Sheng Z, Gan F W 2021 Appl. Opt. 60 413Google Scholar

    [2]

    Zhang C P, Zhang M, Xie Y W, Shi Y C, Kumar R, Panepucci R R, Dai D X 2020 Photonics Res. 8 1171Google Scholar

    [3]

    Fang Z R, Chen R, Zhang J Y, Xu P P, Majumdar A 2022 Conference on Lasers and Electro-Optics San Jose, California United States, May 15–20, 2022 pp1,2

    [4]

    Wang N N, Li T T, Sun B S, Wang Z, Zhou L J, Gu T Y 2021 Opt. Lett. 46 4088Google Scholar

    [5]

    Song C M, Gao Y X, Wang G X, Chen Y M, Xu P P, Gu C J, Shi Y C, Shen X 2022 Opt. Express 30 30430Google Scholar

    [6]

    Tao X, Gu Y 2013 Nano Lett. 13 3501Google Scholar

    [7]

    Xu K, Jiang W, Gao X S, Zhao Z J, Low T, Zhu W J 2020 Nanoscale 12 23488Google Scholar

    [8]

    Lee H, Kang D H, Tran L 2005 Mater. Sci. Eng. , B 119 196Google Scholar

    [9]

    Botcha V D, Hong Y H, Huang Z H, Li Z W, Liu Q, Wu J, Lu Y M, Liu X K 2019 J. Alloys Compd. 773 698Google Scholar

    [10]

    Lee H, Kang D H 2005 Jpn. J. Appl. Phys. 44 4759Google Scholar

    [11]

    Huang Y T, Chen N K, Li Z Z, Wang X P, Sun H B, Zhang S B, Li X B 2022 InfoMat 4 e12341Google Scholar

    [12]

    Li T T, Wang Y, Li W, Mao D, Benmore C J, Evangelista I, Xing H D, Li Q, Wang F F, Sivaraman G, Janotti A, Law S, Gu T Y 2022 Adv. Mater. 34 e2108261Google Scholar

    [13]

    Taghinejad H, Abdollahramezani S, Eftekhar A A, Fan T R, Hosseinnia A H, Hemmatyar O, Dorche A E, Gallmon A, Adibi A 2021 Opt. Express 29 20449Google Scholar

    [14]

    Zheng J J, Khanolkar A, Xu P P, Colburn S, Deshmukh S, Myers J, Frantz J, Pop E, Hendrickson J, Doylend J, Boechler N, Majumdar A 2018 Opt. Mater. Express 8 1551Google Scholar

    [15]

    Yuan H, Wu J G, Zhang J P, Pu X, Zhang Z F, Yu Y, Yang J B 2022 Nanomaterials 12 669Google Scholar

    [16]

    Ríos C, Zhang Y F, Shalaginov M Y, Deckoff-Jones S, Wang H Z, An S S, Zhang H L, Kang M, Richardson K A, Roberts C, Chou J B, Liberman V, Vitale S A, Kong J, Gu T, Hu J J 2021 Adv. Photonics Res. 2 2000034Google Scholar

    [17]

    Liu T Y, Xu Y, Liu S Y, Sun X Q, Zhang D M 2022 Opt. Mater. Express 12 2584Google Scholar

    [18]

    Su Y X, Liu D M, Zhang M M 2022 Opt. Express 30 40379Google Scholar

    [19]

    Wei J, Rajesh M, Berardi S R 2021 Opt. Mater. Express 11 3007Google Scholar

    [20]

    Li T T, Wang Y, Xing H D, Li Q, Wang F F, Soman A, Law S, Gu T Y 2021 Conference on Lasers and Electro-optics Electr Network, May 9–14, 2021 pSM4B.5

    [21]

    Behera B, Sutar B C, Pradhan N R 2021 Emergent Mater. 4 847Google Scholar

    [22]

    Li J Y, Li H D, Niu X B, Wang Z M 2021 ACS Nano 15 18683Google Scholar

    [23]

    Forouzmand A, Mosallaei H 2018 Opt. Express 26 17948Google Scholar

    [24]

    Xu K, Liu L, Wen X, Sun W Z, Zhang N, Yi N B, Sun S, Xiao S M, Song Q H 2017 Opt. Lett. 42 855Google Scholar

  • 图 1  器件整体结构 (a) 优化后得到的结果和器件的参数, 其中Out1与Out2为器件的两个输出端口; (b) 初始化时划分好的像素点网格和圆孔的初始位置

    Figure 1.  Overall device structure: (a) Optimized results and device parameters, where Out1 and Out2 are the two output ports of the device; (b) the initial position of the divided pixel grid and the air hole during initialization.

    图 2  DBS流程图

    Figure 2.  DBS Flowchart.

    图 3  通过模拟仿真得到的3种分束比下的结果 (a) In2Se3α态时实现的1∶1分束比; (b) 1∶1分束比下两个端口的透过率; (c) In2Se3在中间混合态时实现的1∶1.5分束比; (d) 1∶1.5分束比下两个端口的透过率; (e) In2Se3在β态时实现的1∶2分束比; (f) 1∶2分束比下两个端口的透过率

    Figure 3.  Results obtained by simulation for three beam splitting ratios: (a) 1:1 beam splitting ratio achieved for In2Se3 in the α state; (b) transmittance of two ports at 1∶1 beam splitting ratio; (c) 1∶1.5 beam splitting ratio achieved by In2Se3 in the intermediate mixed state; (d) transmittance of both ports at 1∶1.5 beam splitting ratio. (e) 1∶2 beam splitting ratio achieved by In2Se3 in the beta state; (f) transmittance of two ports at 1∶2 beam splitting ratio.

    图 4  根据(3)式和(4)式得到的IL与端口平衡误差 (a) 由(3)式计算得到的In2Se3在3种状态下的IL; (b) 由(4)式计算得到的In2Se3在3种状态下的端口平衡误差

    Figure 4.  IL and port balance error obtained from Eq. (3) and Eq. (4): (a) IL of In2Se3 in three states calculated from Eq. (3); (b) port balance error of In2Se3 in three states calculated from Eq. (4).

    图 5  (a) In2Se3α态与β态在混合态中占比对折射率的影响; (b) In2Se3在相变过程中实现的分束比变化

    Figure 5.  (a) Influence of the proportion of α and β states of In2Se3 in the mixed state on the refractive index; (b) variation of the upper and lower port splitting ratio in In2Se3 phase transition.

    图 6  SOI平台与In2Se3设计的功率分束器在实现相同分束比时的打孔情况 (a) SOI平台实现1∶1, 1∶1.5, 1∶2分束比的功率分束器; (b) In2Se3材料实现 1∶1, 1∶1.5, 1∶2分束比的功率分束器; (c) SOI平台与In2Se3实现各个分束比时的IL对比

    Figure 6.  Perforation of SOI platform and In2Se3 designed power beam splitters in achieving the same beam splitting ratio: (a) SOI platform realizing power beam splitters with 1∶1, 1∶1.5, and 1∶2 beam splitting ratios; (b) In2Se3 material realizing power beam splitters with 1∶1, 1∶1.5, and 1∶2 beam splitting ratios; (c) IL comparison between SOI platform and In2Se3 when realizing each beam splitting ratio.

    图 7  圆孔直径对器件的影响 (a) In2Se3α态时圆孔直径误差在5 nm范围内的IL; (b) In2Se3在中间混合态时圆孔直径误差在5 nm范围内的IL; (c) In2Se3β态时圆孔直径误差在5 nm范围内的IL; (d) In2Se3α态时圆孔直径误差在5 nm范围内的平衡误差; (e) In2Se3在中间混合态时圆孔直径误差在5 nm范围内的平衡误差; (f) In2Se3β态时圆孔直径误差在5 nm范围内的平衡误差

    Figure 7.  Effect of air circular hole diameter on the device: (a) IL of In2Se3 in α state with circular hole diameter error in the range of 5 nm; (b) IL of In2Se3 in intermediate mixed state with circular hole diameter error in the range of 5 nm; (c) IL of In2Se3 in β state with circular hole diameter error in the range of 5 nm; (d) the equilibrium error of In2Se3 in α state with circular hole diameter error in the range of 5 nm; (e) the equilibrium error of In2Se3 in the intermediate mixed state with a circular hole diameter error in the range of 5 nm; (f) the equilibrium error of In2Se3 in the β-state with a circular hole diameter error in the range of 5 nm.

    表 1  几种相变材料的光学性能比较(A, 非晶态; C, 晶态; k, 消光系数)

    Table 1.  Comparison of optical properties of several phase change materials ( A, amorphous; C, crystalline; k, extinction coefficients).

    Phase change
    temperature/°C
    Δn (1550 nm)Reversibilityk (1550 nm)
    Ge2Sb2Te5 (GST)AC, >600[13]
    CA, 200[14]
    2.85[15]yeskA = 0.12,
    kC = 1.49[15]
    Ge2Sb2Se4Te1 (GSST)AC, ~270
    CA, >600[16]
    1.625[17]yeskA ~ 0,
    kC = 0.42[17]
    Sb2Se3AC, ~200
    CA, ~600[18]
    1.22[18]yeskA ~ 0,
    kC ~ 0[19]
    In2Se3αβ, 200
    ββ', 200
    β'α, 60[12]
    ~0.35[12]yeskα = 0,
    kβ = 0[12]
    DownLoad: CSV

    表 2  目前报道的几种功率分束器与本文设计的功率分束器的比较

    Table 2.  Comparison of several power splitters reported at present with the power splitter designed in this paper.

    文献[24](2017)文献[1](2021)文献[15](2022)This work
    Dimension3.6 µm×3.6 µmLtaper = 80 µm2.4 µm×2.4 µm3.6 µm×2.4 µm
    MaterialSiSi3N4GSSTIn2Se3
    TypeMMIadiabatic tapersMMIMMI
    Structure
    Bandwidth/nm1530—15601500—16001530—15601540—1560
    Adjustablenonoyesyes
    Excess loss/dB0.970.02<0.5 (1∶1)
    <0.83 (1.5∶1)
    <1.2 (2∶1)
    <1.18 (2.5∶1)
    <0.27 (1∶1)
    <0.13 (1∶1.5)
    <0.17 (1∶2)
    MethodFSMNumerical simulationsDBSDBS
    DownLoad: CSV
  • [1]

    Zhu J B, Chao Q, Huang H Y, Zhao Y X, Li Y, Tao L, She X J, Liao H, Huang R, Zhu Z J, Liu X, Sheng Z, Gan F W 2021 Appl. Opt. 60 413Google Scholar

    [2]

    Zhang C P, Zhang M, Xie Y W, Shi Y C, Kumar R, Panepucci R R, Dai D X 2020 Photonics Res. 8 1171Google Scholar

    [3]

    Fang Z R, Chen R, Zhang J Y, Xu P P, Majumdar A 2022 Conference on Lasers and Electro-Optics San Jose, California United States, May 15–20, 2022 pp1,2

    [4]

    Wang N N, Li T T, Sun B S, Wang Z, Zhou L J, Gu T Y 2021 Opt. Lett. 46 4088Google Scholar

    [5]

    Song C M, Gao Y X, Wang G X, Chen Y M, Xu P P, Gu C J, Shi Y C, Shen X 2022 Opt. Express 30 30430Google Scholar

    [6]

    Tao X, Gu Y 2013 Nano Lett. 13 3501Google Scholar

    [7]

    Xu K, Jiang W, Gao X S, Zhao Z J, Low T, Zhu W J 2020 Nanoscale 12 23488Google Scholar

    [8]

    Lee H, Kang D H, Tran L 2005 Mater. Sci. Eng. , B 119 196Google Scholar

    [9]

    Botcha V D, Hong Y H, Huang Z H, Li Z W, Liu Q, Wu J, Lu Y M, Liu X K 2019 J. Alloys Compd. 773 698Google Scholar

    [10]

    Lee H, Kang D H 2005 Jpn. J. Appl. Phys. 44 4759Google Scholar

    [11]

    Huang Y T, Chen N K, Li Z Z, Wang X P, Sun H B, Zhang S B, Li X B 2022 InfoMat 4 e12341Google Scholar

    [12]

    Li T T, Wang Y, Li W, Mao D, Benmore C J, Evangelista I, Xing H D, Li Q, Wang F F, Sivaraman G, Janotti A, Law S, Gu T Y 2022 Adv. Mater. 34 e2108261Google Scholar

    [13]

    Taghinejad H, Abdollahramezani S, Eftekhar A A, Fan T R, Hosseinnia A H, Hemmatyar O, Dorche A E, Gallmon A, Adibi A 2021 Opt. Express 29 20449Google Scholar

    [14]

    Zheng J J, Khanolkar A, Xu P P, Colburn S, Deshmukh S, Myers J, Frantz J, Pop E, Hendrickson J, Doylend J, Boechler N, Majumdar A 2018 Opt. Mater. Express 8 1551Google Scholar

    [15]

    Yuan H, Wu J G, Zhang J P, Pu X, Zhang Z F, Yu Y, Yang J B 2022 Nanomaterials 12 669Google Scholar

    [16]

    Ríos C, Zhang Y F, Shalaginov M Y, Deckoff-Jones S, Wang H Z, An S S, Zhang H L, Kang M, Richardson K A, Roberts C, Chou J B, Liberman V, Vitale S A, Kong J, Gu T, Hu J J 2021 Adv. Photonics Res. 2 2000034Google Scholar

    [17]

    Liu T Y, Xu Y, Liu S Y, Sun X Q, Zhang D M 2022 Opt. Mater. Express 12 2584Google Scholar

    [18]

    Su Y X, Liu D M, Zhang M M 2022 Opt. Express 30 40379Google Scholar

    [19]

    Wei J, Rajesh M, Berardi S R 2021 Opt. Mater. Express 11 3007Google Scholar

    [20]

    Li T T, Wang Y, Xing H D, Li Q, Wang F F, Soman A, Law S, Gu T Y 2021 Conference on Lasers and Electro-optics Electr Network, May 9–14, 2021 pSM4B.5

    [21]

    Behera B, Sutar B C, Pradhan N R 2021 Emergent Mater. 4 847Google Scholar

    [22]

    Li J Y, Li H D, Niu X B, Wang Z M 2021 ACS Nano 15 18683Google Scholar

    [23]

    Forouzmand A, Mosallaei H 2018 Opt. Express 26 17948Google Scholar

    [24]

    Xu K, Liu L, Wen X, Sun W Z, Zhang N, Yi N B, Sun S, Xiao S M, Song Q H 2017 Opt. Lett. 42 855Google Scholar

  • [1] Yang Xu, Li Jing, Mao Yu, Tao Ke-Ai, Sun Kuan, Chen Shan-Shan, Zhou Yong-Li, Zheng Yu-Jie. Experimental study of single-phase change material thermal diode based on calcium chloride hexahydrate. Acta Physica Sinica, 2024, 73(5): 058301. doi: 10.7498/aps.73.20231686
    [2] Ju Xue-Wei, Zhang Lin-Feng, Huang Feng, Zhu Guo-Feng, Li Shu-Jin, Chen Yan-Qing, Wang Jia-Xun, Zhong Shun-Cong, Chen Ying, Wang Xiang-Feng. Reverse design and optimization of digital terahertz bandpass filters. Acta Physica Sinica, 2024, 73(6): 060702. doi: 10.7498/aps.73.20231584
    [3] Zhu Xiang-Ning, Feng Dai-Li, Feng Yan-Hui, Lin Lin, Zhang Xin-Xin. Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification. Acta Physica Sinica, 2023, 72(8): 088801. doi: 10.7498/aps.72.20222466
    [4] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [5] Liu Yu-Hang, Lin Tong, Li Shao-Bo, Yu Wen-Qi, Ma Xiang, Liang Xiao-Dong, Yun Bin-Feng. Reconfigurable optical filter based on microring resonator assisted by tunable Sagnac reflector. Acta Physica Sinica, 2023, 72(8): 084208. doi: 10.7498/aps.72.20222384
    [6] Du Te, Ma Han-Si, Jiang Xin-Peng, Zhao Fen, Zhang Zhao-Jian, Wang Zhi-Cheng, Peng Zheng, Zhang Yi-Yi, Zhang Yu-Qing, Luo Ming-Yu, Zou Hong-Xin, Wu Jia-Gui, Yan Pei-Guang, Zhu Gang-Yi, Yu Yang, He Xin, Chen Huan, Zhang Zhen-Fu, Yang Jun-Bo. Research progress of intelligent design of on-chip optical interconnection devices. Acta Physica Sinica, 2023, 72(18): 184204. doi: 10.7498/aps.72.20230705
    [7] Ke Hang, Li Pei-Li, Shi Wei-Hua. Two-dimensional photonic crystal waveguide 1×5 beam splitter reversely designed by downhill-simplex algorithm. Acta Physica Sinica, 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [8] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] Wang Zhi-Peng, Wang Bing-Zhong, Liu Jin-Pin, Wang Ren. Inverse design method of microscatterer array for realizing scattering field intensity shaping. Acta Physica Sinica, 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [10] Inverse design method of microscatterer array for realizing scattering field intensity shaping. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200825
    [11] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [12] Zhao Xuan, Liu Chen, Ma Hui-Li, Feng Shuai. Photonic crystal frequency band selecting and power splitting devices based on the energy coupling effect between waveguides. Acta Physica Sinica, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [13] Tian Man-Man, Wang Guo-Xiang, Shen Xiang, Chen Yi-Min, Xu Tie-Feng, Dai Shi-Xun, Nie Qiu-Hua. Phase change properties of ZnSb-doped Ge2Sb2Te5 films. Acta Physica Sinica, 2015, 64(17): 176802. doi: 10.7498/aps.64.176802
    [14] Wang Ting, Zhang Jian-Jun, Huiyun Liu. Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect. Acta Physica Sinica, 2015, 64(20): 204209. doi: 10.7498/aps.64.204209
    [15] Tang Xiong-Gui, Liao Jin-Kun, Li He-Ping, Liu Yong, Liu Yong-Zhi. Design of tunable optical power splitter based on thermal expansion effect. Acta Physica Sinica, 2013, 62(2): 024218. doi: 10.7498/aps.62.024218
    [16] Yang Wei, Liu Ying, Xiao Li-Feng, Yang Zhao-Xiang, Pan Jian-Xuan. Acousto-optic wavelength-tunable erbium-doped fiber ring laser. Acta Physica Sinica, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [17] Chen Zhao-Zhen, Xu Ze-Da. Investigation on characteristics of a new kind of polymer material with sine-phase waveguide grating. Acta Physica Sinica, 2010, 59(5): 3264-3272. doi: 10.7498/aps.59.3264
    [18] Yang Wei, Liu Ying, Xiao Li-Feng, Gao Shu-Li. Suppression of sidelobe levels using two cascaded single-stage acousto-optic tunable filters. Acta Physica Sinica, 2009, 58(1): 328-332. doi: 10.7498/aps.58.328
    [19] Zeng Wei-You, Xie Kang, Jiang Hai-Ming, Chen Kai. A novel phase self-compensation isolator based on TE-TM mode conversion. Acta Physica Sinica, 2008, 57(6): 3607-3612. doi: 10.7498/aps.57.3607
    [20] Sun Yi-Ling, Pan Jian-Xia. Analysis of the fully destructive interference of overlapping-images in MMI couplers. Acta Physica Sinica, 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
Metrics
  • Abstract views:  4100
  • PDF Downloads:  104
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2023
  • Accepted Date:  25 May 2023
  • Available Online:  29 May 2023
  • Published Online:  05 August 2023

/

返回文章
返回