-
Lithium niobate, known as one of the most widely used nonlinear optical crystals, has recently received significant attention from both academia and industrial circles. The surge in interest can be attributed to the commercial availability of thin-film lithium niobate (TFLN) wafers and the rapid advancements in nanofabrication techniques. A milestone was achieved in 2020 with the successful fabrication of wafer-scale TFLN photonic integrated circuits, which paved the way for mass-producible and cost-effective manufacturing of TFLN-based products. At present, the majority of research on TFLN photonic integrated devices focuses on light manipulation, i.e. field modulation and frequency conversion. The electro-optic, acousto-optic, photo-elastic and piezo-electric effects of lithium niobate are harnessed to modulate the amplitude, phase and frequency of light. The second-order and third-order nonlinearities of lithium niobate enable frequency conversion processes, which leads to the development of frequency converters, optical frequency combs, and supercontinuum generation devices. These exceptional optical properties of lithium niobate enable the electromagnetic wave to manipulate covering from radio-frequency to terahertz, infrared, and visible bands. Using the outstanding performance of TFLN photonic integrated devices, including remarkable modulation rate, wide operation bandwidth, efficient nonlinear frequency conversion, and low power consumption, diverse applications, such as spanning optical information processing, laser ranging, optical frequency combs, microwave optics, precision measurement, quantum optics, and quantum computing, are demonstrated. Additionally, it is reported that TFLN-based lasers and amplifiers have made remarkable progress, and both optical and electrical pumps are available. These achievements include combining gain materials, such as rare-earth ions or heterostructures, with III-V semiconductors. The integration of low-dimensional materials or absorptive metals with TFLN can also realize TFLN-based detectors. These significant developments expand the potential applications of TFLN photonic integrated devices, thus paving the way for monolithic TFLN chips. The versatility and high performances of TFLN photonic integrated devices have made revolutionary progress in these fields, opening up new possibilities for cutting-edge technologies and their practical implementations. In this point of view, we briefly introduce the development of TFLN nanofabricationn technology. Subsequently, we review the latest progress of TFLN photonic integrated devices, including lasers, functional nonlinear optical devices, and detectors. Finally, we discuss the future development directions and potential ways of TFLN photonics. -
Keywords:
- integrated optics /
- nonlinear optics /
- lithium niobate /
- microcavity optics
[1] Zhu D, Shao L, Yu M, Cheng R, Desiatov B, Xin C J, Hu Y, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer Christian, Zhang M, Lončar M 2021 Adv. Opt. Photon. 13 242Google Scholar
[2] Boes A, Chang L, Langrock C, Yu M, Zhang M, Lin Q, Lončar M, Fejer M, Bowers J, Mitchell A 2023 Science 379 eabj4396Google Scholar
[3] Jia Y, Wu J, Sun X, Yan X, Xie R, Wang L, Chen Y, Chen F 2022 Laser Photonics Rev. 16 2200059Google Scholar
[4] Luo Q, Bo F, Kong Y, Zhang G, Xu J 2023 Adv. Photonics 5 034002Google Scholar
[5] Saravi S, Pertsch T, Setzpfandt F 2021 Adv. Opt. Mater. 9 2100789Google Scholar
[6] Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar
[7] Gao R, Yao N, Guan J, Deng L, Lin J, Wang M, Qiao L, Fang W, Cheng Y 2022 Chin. Opt. Lett. 20 011902Google Scholar
[8] Hu H, Ricken R, Sohler W, Wehrspohn R B 2007 IEEE Photon. IEEE Photon. Technol. Lett. 19 417Google Scholar
[9] Zhuang R, He J, Qi Y, Li Y 2022 Adv. Mater. 35 2208113Google Scholar
[10] Luke K, Kharel P, Reimer C, He L, Loncar M, Zhang M 2020 Opt. Express 28 24452Google Scholar
[11] Snigirev V, Riedhauser A, Lihachev G, Churaev M, Riemensberger, Wang R N, Siddharth A, Huang G, Möhl C, Popoff Y, Drechsler U, Caimi D, Hönl S, Liu J, Seidler P, Kippenberg T J 2023 Nature 615 411Google Scholar
[12] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar
[13] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L, Cai X 2019 Nat. Photonics 13 359Google Scholar
[14] Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J, Lončar M 2019 Nature 568 373Google Scholar
[15] Hu Y, Yu M, Zhu D, Sinclair N, Shams-Ansari A, Shao L, Holzgrafe J, Puma E, Zhang M, Lončar M 2021 Nature 599 587Google Scholar
[16] Yu M, Barton D, Cheng R, Reimer C, Kharel P, He L, Shao L, Zhu D, Hu Y, Grant H R, Johansson L, Okawachi Y, Gaeta A L, Zhang M, Lončar M 2022 Nature 612 252Google Scholar
[17] Sarabalis C J, McKenna T P, Patel R N, Van Laer R, Safavi-Naeini A H 2020 APL Photonics 5 086104Google Scholar
[18] Lu J, Li M, Zou C-L, Sayem A A, Tang H X 2020 Optica 7 1654Google Scholar
[19] Lin J, Yao N, Hao Z, Zhang J, Mao W, Wang M, Chu W, Wu R, Fang Z, Qiao L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar
[20] Luo R, He Y, Liang H, Li M, Lin Q 2019 Laser Photonics Rev. 13 1800288Google Scholar
[21] Yuan T, Wu J, Liu Y, Yan X, Jiang H, Li H, Liang Z, Lin Q, Chen Y, Chen X F 2023 Sci. China-Phys. Mech. Astron. 66 284211Google Scholar
[22] He Y, Yang Q F, Ling J W, Luo R, Liang H X, Li M X, Shen B Q, Wang H M, Vahala K, Lin Q 2019 Optica 6 1138Google Scholar
[23] Shao L, Yu M, Maity S, Sinclair N, Zheng L, Chia C, Shams-Ansari A, Wang C, Zhang M, Lai K, Lončar M 2019 Optica 6 1498Google Scholar
[24] Xue G T, Niu Y F, Liu X, Duan J C, Chen W, Pan Y, Jia K, Wang X, Liu H Y, Zhang Y, Xu P, Zhao G, Cai X, Gong Y X, Hu X, Xie Z, Zhu S N 2021 Phys. Rev. Applied 15 064059Google Scholar
[25] Nehra R, Sekine R, Ledezma L, Guo Q, Gray R M, Roy A, Marandi A 2022 Science 377 1333Google Scholar
[26] Liu H Y, Shang M, Liu X, Wei Y, Mi M, Zhang L, Gong Y X, Xie Z, Zhu S N 2022 Adv. Photon. Nexus 2 016003Google Scholar
[27] Desiatov B, Lončar M 2019 Appl. Phys. Lett. 115 121108Google Scholar
[28] Guan H Y, Hong J Y, Wang X L, Ming J Y, Zhang Z L, Liang A J, Han X Y, Dong J L, Qiu W T, Chen Z, Lu H H, Zhang H 2021 Adv. Opt. Mater. 9 2100245Google Scholar
[29] Sun X L, Sheng Y, Gao X, Liu Y, Ren F, Tan Y, Yang Z X, Jia Y C, Chen F 2022 Small 18 2203532Google Scholar
[30] Sayem A A, Cheng R, Wang S, Tang H X 2020 Appl. Phys. Lett. 116 151102Google Scholar
-
-
[1] Zhu D, Shao L, Yu M, Cheng R, Desiatov B, Xin C J, Hu Y, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer Christian, Zhang M, Lončar M 2021 Adv. Opt. Photon. 13 242Google Scholar
[2] Boes A, Chang L, Langrock C, Yu M, Zhang M, Lin Q, Lončar M, Fejer M, Bowers J, Mitchell A 2023 Science 379 eabj4396Google Scholar
[3] Jia Y, Wu J, Sun X, Yan X, Xie R, Wang L, Chen Y, Chen F 2022 Laser Photonics Rev. 16 2200059Google Scholar
[4] Luo Q, Bo F, Kong Y, Zhang G, Xu J 2023 Adv. Photonics 5 034002Google Scholar
[5] Saravi S, Pertsch T, Setzpfandt F 2021 Adv. Opt. Mater. 9 2100789Google Scholar
[6] Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar
[7] Gao R, Yao N, Guan J, Deng L, Lin J, Wang M, Qiao L, Fang W, Cheng Y 2022 Chin. Opt. Lett. 20 011902Google Scholar
[8] Hu H, Ricken R, Sohler W, Wehrspohn R B 2007 IEEE Photon. IEEE Photon. Technol. Lett. 19 417Google Scholar
[9] Zhuang R, He J, Qi Y, Li Y 2022 Adv. Mater. 35 2208113Google Scholar
[10] Luke K, Kharel P, Reimer C, He L, Loncar M, Zhang M 2020 Opt. Express 28 24452Google Scholar
[11] Snigirev V, Riedhauser A, Lihachev G, Churaev M, Riemensberger, Wang R N, Siddharth A, Huang G, Möhl C, Popoff Y, Drechsler U, Caimi D, Hönl S, Liu J, Seidler P, Kippenberg T J 2023 Nature 615 411Google Scholar
[12] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar
[13] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L, Cai X 2019 Nat. Photonics 13 359Google Scholar
[14] Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J, Lončar M 2019 Nature 568 373Google Scholar
[15] Hu Y, Yu M, Zhu D, Sinclair N, Shams-Ansari A, Shao L, Holzgrafe J, Puma E, Zhang M, Lončar M 2021 Nature 599 587Google Scholar
[16] Yu M, Barton D, Cheng R, Reimer C, Kharel P, He L, Shao L, Zhu D, Hu Y, Grant H R, Johansson L, Okawachi Y, Gaeta A L, Zhang M, Lončar M 2022 Nature 612 252Google Scholar
[17] Sarabalis C J, McKenna T P, Patel R N, Van Laer R, Safavi-Naeini A H 2020 APL Photonics 5 086104Google Scholar
[18] Lu J, Li M, Zou C-L, Sayem A A, Tang H X 2020 Optica 7 1654Google Scholar
[19] Lin J, Yao N, Hao Z, Zhang J, Mao W, Wang M, Chu W, Wu R, Fang Z, Qiao L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar
[20] Luo R, He Y, Liang H, Li M, Lin Q 2019 Laser Photonics Rev. 13 1800288Google Scholar
[21] Yuan T, Wu J, Liu Y, Yan X, Jiang H, Li H, Liang Z, Lin Q, Chen Y, Chen X F 2023 Sci. China-Phys. Mech. Astron. 66 284211Google Scholar
[22] He Y, Yang Q F, Ling J W, Luo R, Liang H X, Li M X, Shen B Q, Wang H M, Vahala K, Lin Q 2019 Optica 6 1138Google Scholar
[23] Shao L, Yu M, Maity S, Sinclair N, Zheng L, Chia C, Shams-Ansari A, Wang C, Zhang M, Lai K, Lončar M 2019 Optica 6 1498Google Scholar
[24] Xue G T, Niu Y F, Liu X, Duan J C, Chen W, Pan Y, Jia K, Wang X, Liu H Y, Zhang Y, Xu P, Zhao G, Cai X, Gong Y X, Hu X, Xie Z, Zhu S N 2021 Phys. Rev. Applied 15 064059Google Scholar
[25] Nehra R, Sekine R, Ledezma L, Guo Q, Gray R M, Roy A, Marandi A 2022 Science 377 1333Google Scholar
[26] Liu H Y, Shang M, Liu X, Wei Y, Mi M, Zhang L, Gong Y X, Xie Z, Zhu S N 2022 Adv. Photon. Nexus 2 016003Google Scholar
[27] Desiatov B, Lončar M 2019 Appl. Phys. Lett. 115 121108Google Scholar
[28] Guan H Y, Hong J Y, Wang X L, Ming J Y, Zhang Z L, Liang A J, Han X Y, Dong J L, Qiu W T, Chen Z, Lu H H, Zhang H 2021 Adv. Opt. Mater. 9 2100245Google Scholar
[29] Sun X L, Sheng Y, Gao X, Liu Y, Ren F, Tan Y, Yang Z X, Jia Y C, Chen F 2022 Small 18 2203532Google Scholar
[30] Sayem A A, Cheng R, Wang S, Tang H X 2020 Appl. Phys. Lett. 116 151102Google Scholar
Catalog
Metrics
- Abstract views: 5392
- PDF Downloads: 339
- Cited By: 0