Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification

Zhu Xiang-Ning Feng Dai-Li Feng Yan-Hui Lin Lin Zhang Xin-Xin

Citation:

Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification

Zhu Xiang-Ning, Feng Dai-Li, Feng Yan-Hui, Lin Lin, Zhang Xin-Xin
PDF
HTML
Get Citation
  • Thermal energy storage technology can shift the peak and fill the valley of heat, which lays the foundation for realizing the goal of “emission peak and carbon neutrality”. Among various thermal energy storage techniques, the latent heat storage technology based on composite phase change materials can provide large storage capacity with a small temperature variation, and shows great potential in solving the intermittency issue of renewable energy. As a sustainable and renewable material, natural wood has the advantages of a unique anisotropic three-dimensional structure, perfect natural channel, low price, and rich resources. Therefore, the carbonized wood obtained from high-temperature carbonization of natural wood is an excellent choice as a supporting skeleton of composite phase change materials. On the other hand, polyethylene glycol is widely used in energy storage because of its suitable phase transition temperature (46–65℃), high latent heat (145–175 J/g), and stable performance. In this study, carbonized bamboo is prepared at high temperatures. To improve heat storage, thermal conductivity, and photo-thermal conversion properties, the carbonized bamboo is functionalized by graphene oxide and reduced graphene oxide, respectively. Finally, polyethylene glycol is implanted into modified carbonized bamboo to form shape-stabilized phase change materials. Their microstructures, morphologies, and thermophysical properties are characterized. The experimental results show that graphene oxide and reduced graphene oxide can change the surface polarity of carbonized bamboo, thus reducing the interfacial thermal resistance between the carbonized bamboo skeleton and polyethylene glycol, and improving the encapsulation ratio, thermal conductivity, and photo-thermal conversion efficiency without affecting the crystallization behavior of polyethylene glycol. The encapsulation ratio of carbonized bamboo/reduced graphene oxide/polyethylene glycol ternary phase change material is as high as 81.11% (only 4.67% lower than the theoretical value), its latent heat of melting and solidification are 115.62 J/g and 104.39 J/g, its thermal conductivity is greatly increased to 1.09 W/(m·K) (3.7 times that of pure polyethylene glycol), accompanied by substantial growth in its photo-thermal conversion efficiency, reaching 88.35% (3.1 times that of pure polyethylene glycol). This research develops a biomass-derived porous composite phase change material with high heat storage density, high heat transfer rate, and high photo-thermal conversion ability.
      Corresponding author: Feng Dai-Li, dlfeng@ustb.edu.cn ; Feng Yan-Hui, yhfeng@me.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52176054, 52236006).
    [1]

    Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, ChenY, Sprenkle V L, Li X 2016 Adv. Mater. 28 1600377

    [2]

    Qian T T, Li J 2018 Energy 142 234Google Scholar

    [3]

    Zhang S, Wu W, Wang S 2017 Energy 130 228Google Scholar

    [4]

    Wang C, Feng L, Li W, Zheng J, Tian W, Li X 2012 Sol. Energy Mater. Sol. Cells 105 21Google Scholar

    [5]

    Yang H, Wang Y, Yu Q, Cao G, Yang R, Ke J, Di X, Liu, F, Zhang W, Wang C 2018 Appl. Energy 212 455Google Scholar

    [6]

    Huang X, Alva G, Liu L, Fang G 2017 Appl. Energy 200 19Google Scholar

    [7]

    Min X, Fang M H, Huang Z H, Liu Y G, Huang Y T, Wen R L, Qian T T, Wu X W 2015 Sci. Rep. 5 12964Google Scholar

    [8]

    Feng L L, Zheng J, Yang H Z, Yan L 2011 Sol. Energy Mater. Sol. Cells 95 644Google Scholar

    [9]

    Qian T T, Li J, Deng Y 2016 Sci. Rep. 6 32392Google Scholar

    [10]

    Karaman S, Karaipekli A, Sar A, Bier A 2011 Sol. Energy Mater. Sol. Cells 95 1647Google Scholar

    [11]

    Qi G Q, Liang C L, Bao R Y, Liu Z Y, Yang W, Xie B H, Yang M B 2014 Sol. Energy Mater. Sol. Cells 123 171Google Scholar

    [12]

    Qian T T, Li J, Min X, Deng Y, Guan W, Ma H 2015 Energy 82 333Google Scholar

    [13]

    Seki, Y, Ince, Seyma, Ezan M A, Turgut A, Erek A 2015 Sol. Energy Mater. Sol. Cells 140 457Google Scholar

    [14]

    Zhang N, Yuan Y P, Wang X, Cao X L, Yang X J, Hu S C 2013 Chem. Eng. J. 231 214Google Scholar

    [15]

    Li B, Liu T, Hu L, Wang Y, Nie S 2013 Chem. Eng. J. 215 819

    [16]

    Zhao Y J, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2018 Energy Build. 158 1049Google Scholar

    [17]

    Zhang X G, Huang Z H, Yin Z Y, Zhang W Y, Huang Y T, Liu Y G, Fang M H, Wu X W, Min X 2017 Energy Build. 154 46Google Scholar

    [18]

    Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K 2014 J. Mater. Chem. A 2 7759Google Scholar

    [19]

    Zhang Y, Song J W, Kierzewski, Iain, Li Y J, Gong Y H 2017 Energy Environ. Sci. 10 538Google Scholar

    [20]

    Zhang Z T, Cao B Y 2022 Sci. China. Phys. Mech. 65 117003Google Scholar

    [21]

    Qiang S, Jing O, Yi Z, Yang H 2017 Appl. Clay Sci. 146 14Google Scholar

    [22]

    Zhang Y, Liu J, Su Z, Lu M, Liu S, Jiang T 2020 Constr. Build. Mater. 238 117717Google Scholar

    [23]

    Zou T, Fu W W, Liang X L, Wang S F, Gao X N, Zhang Z G, Fang Y T, Henrik L, Mark J K 2020 Energy 190 116473Google Scholar

    [24]

    Xie N, Li Z, Gao X, Fang Y, Zhang Z 2020 Int. J. Refrig. 110 178Google Scholar

    [25]

    Yang J, Jia Y L, Bing N C, Wang L L, Xie H Q, Yu W 2019 Appl. Therm. Eng. 163 114412Google Scholar

    [26]

    Zhang H, Wang L, Xi S, Xie H, Yu W 2021 Renew. Energy 175 307Google Scholar

    [27]

    Liu Y, Yang Y, Li S 2016 J. Mater. Chem. A 10 1039

    [28]

    Li Z, Yang W, Jiang Z, He F, Wu J 2017 Appl. Energy 197 354Google Scholar

    [29]

    Ma X C, Liu Y J, Liu H, Zhang L, Xu B, Xiao F 2018 Sol. Energy Mater. Sol. Cells 188 73Google Scholar

    [30]

    Feng D L, Zang Y Y, Li P, Feng Y H, Yan Y Y, Zhang X X 2021 Compos. Sci. Technol. 210 108832Google Scholar

    [31]

    Yu Z P, Feng D L, Feng Y H, Zhang X X 2022 Compos. Part A: Appl. Sci. Manufact. 152 106703Google Scholar

    [32]

    Yuan P, Zhang P, Liang T, Zhai S P 2019 Appl. Surf. Sci. 485 402Google Scholar

    [33]

    Xie B, Li C, Zhang B, Yang L, Chen J 2020 Energy Built Environ. 1 187

    [34]

    Hekimolu G, Sar A, Kar T, Kele S, Saleh T A 2021 J. Energy Storage 35 102288Google Scholar

    [35]

    Wu S, Chen Y, Chen Z, Wang J, Cai M, Gao J 2021 Sci. Rep. 11 822Google Scholar

    [36]

    Zhao Y J, Sun B, Du P P, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2019 Mater. Res. Express 6 115515Google Scholar

    [37]

    Chen Y, Cui Z, Ding H, Wan Y, Tang Z, Gao J 2018 Int. J. Mol. Sci. 19 3055Google Scholar

    [38]

    Wan Y C, Chen Y, Cui Z X, Ding H, Gao S F, Han Z, Gao J K 2019 Sci. Rep. 9 11535Google Scholar

    [39]

    Das D, Bordoloi U, Muigai H H, Kalita P 2020 J. Energy Storage 30 101403Google Scholar

    [40]

    Yang H Y, Wang Y, Yu Q, Li G, Sun X, Yang R, Zhang Q, Liu F, Di X, Li J 2018 Energy 159 929Google Scholar

    [41]

    Li C, Xie B, He Z, Chen J, Long Y 2019 Renew. Energy 140 862Google Scholar

    [42]

    Zhang W, Zhang X, Zhang X, Yin Z, Liu Y, Fang M, Wu X, Min X, Huang Z 2019 Thermochim. Acta 674 21Google Scholar

    [43]

    Atinafu D G, Dong W, Wang C, Wang G 2018 J. Mater. Chem. A 6 8969Google Scholar

    [44]

    Wen R, Zhang W, Lv Z, Huang Z, Gao W 2018 Mater. Lett. 215 42Google Scholar

    [45]

    Yang Z, Deng Y, Li J 2019 Appl. Therm. Eng. 150 967Google Scholar

  • 图 1   (a) 天然竹木的碳化过程; (b) 碳化竹木吸附氧化石墨烯和还原氧化石墨烯的过程; (c) 碳化骨架和PEG2000复合过程

    Figure 1.  (a) The carbonization process of natural bamboo wood; (b) the adsorption process of GO and RGO by carbonized wood; (c) the composite process of carbon skeleton and PEG2000.

    图 2  几种材料的横截面SEM图像

    Figure 2.  SEM images of cross-section.

    图 3  (a) NBW和CBW的孔径分布; (b) CBW的拉曼图谱

    Figure 3.  (a) Pore size distribution of NBW and CBW; (b) Raman spectra of CBW.

    图 4  CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW 和 PEG2000的FT-IR光谱(a)和XRD图谱(b)

    Figure 4.  (a) FT-IR spectroscopy and (b) XRD patterns of CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW, and PEG2000.

    图 5  CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW和PEG2000的TG曲线(a)和DSC曲线(b)

    Figure 5.  TG curves (a) and DSC curves (b) of CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW.

    图 6  (a) NBW, CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW和PEG2000的热导率; (b) 生物质复合相变材料的包封率和热导率比较

    Figure 6.  (a) Thermal conductivities of NBW, CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW, and PEG2000; (b) comparison of encapsulation ratio and thermal conductivity of biomass composite phase change materials.

    图 7  CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW和PEG-RGOCBW的应力-应变曲线

    Figure 7.  Stress-strain curves of CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, and PEG-RGOCBW.

    图 8  PEG-CBW, PEG-GOCBW, PEG-RGOCBW和PEG2000的温升曲线(a), 光转换效率(b)和红外热成像图片(c)

    Figure 8.  Temperature rise curve (a), photothermal conversion efficiency (b), and infrared thermal images (c) of PEG-CBW, PEG-GOCBW, PEG-RGOCBW, and PEG2000.

    表 1  NBW和CBW的孔隙参数

    Table 1.  Pore parameters of NBW and CBW.

    样品孔隙率/%平均孔径/nm总孔容/
    (cm3·g–1)
    总孔面积/
    (m2·g–1)
    NBW39.2422.170.4988.91
    CBW79.9546.955.34454.59
    DownLoad: CSV

    表 2  PEG-CBW, PEG-GOCBW, PEG-RGOCBW的相变参数

    Table 2.  Phase change parameters of PEG-CBW, PEG-GOCBW, PEG-RGOCBW.

    样品Tm/TfΔHm/ΔHf$ \gamma $/%
    PEG200052.47/30.86193.00/176.60
    PEG-CBW46.86/36.7644.56/37.1352.66
    PEG-GOCBW50.14/35.0079.49/67.6471.53
    PEG-RGOCBW50.06/37.15115.62/104.3981.11
    DownLoad: CSV
  • [1]

    Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, ChenY, Sprenkle V L, Li X 2016 Adv. Mater. 28 1600377

    [2]

    Qian T T, Li J 2018 Energy 142 234Google Scholar

    [3]

    Zhang S, Wu W, Wang S 2017 Energy 130 228Google Scholar

    [4]

    Wang C, Feng L, Li W, Zheng J, Tian W, Li X 2012 Sol. Energy Mater. Sol. Cells 105 21Google Scholar

    [5]

    Yang H, Wang Y, Yu Q, Cao G, Yang R, Ke J, Di X, Liu, F, Zhang W, Wang C 2018 Appl. Energy 212 455Google Scholar

    [6]

    Huang X, Alva G, Liu L, Fang G 2017 Appl. Energy 200 19Google Scholar

    [7]

    Min X, Fang M H, Huang Z H, Liu Y G, Huang Y T, Wen R L, Qian T T, Wu X W 2015 Sci. Rep. 5 12964Google Scholar

    [8]

    Feng L L, Zheng J, Yang H Z, Yan L 2011 Sol. Energy Mater. Sol. Cells 95 644Google Scholar

    [9]

    Qian T T, Li J, Deng Y 2016 Sci. Rep. 6 32392Google Scholar

    [10]

    Karaman S, Karaipekli A, Sar A, Bier A 2011 Sol. Energy Mater. Sol. Cells 95 1647Google Scholar

    [11]

    Qi G Q, Liang C L, Bao R Y, Liu Z Y, Yang W, Xie B H, Yang M B 2014 Sol. Energy Mater. Sol. Cells 123 171Google Scholar

    [12]

    Qian T T, Li J, Min X, Deng Y, Guan W, Ma H 2015 Energy 82 333Google Scholar

    [13]

    Seki, Y, Ince, Seyma, Ezan M A, Turgut A, Erek A 2015 Sol. Energy Mater. Sol. Cells 140 457Google Scholar

    [14]

    Zhang N, Yuan Y P, Wang X, Cao X L, Yang X J, Hu S C 2013 Chem. Eng. J. 231 214Google Scholar

    [15]

    Li B, Liu T, Hu L, Wang Y, Nie S 2013 Chem. Eng. J. 215 819

    [16]

    Zhao Y J, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2018 Energy Build. 158 1049Google Scholar

    [17]

    Zhang X G, Huang Z H, Yin Z Y, Zhang W Y, Huang Y T, Liu Y G, Fang M H, Wu X W, Min X 2017 Energy Build. 154 46Google Scholar

    [18]

    Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K 2014 J. Mater. Chem. A 2 7759Google Scholar

    [19]

    Zhang Y, Song J W, Kierzewski, Iain, Li Y J, Gong Y H 2017 Energy Environ. Sci. 10 538Google Scholar

    [20]

    Zhang Z T, Cao B Y 2022 Sci. China. Phys. Mech. 65 117003Google Scholar

    [21]

    Qiang S, Jing O, Yi Z, Yang H 2017 Appl. Clay Sci. 146 14Google Scholar

    [22]

    Zhang Y, Liu J, Su Z, Lu M, Liu S, Jiang T 2020 Constr. Build. Mater. 238 117717Google Scholar

    [23]

    Zou T, Fu W W, Liang X L, Wang S F, Gao X N, Zhang Z G, Fang Y T, Henrik L, Mark J K 2020 Energy 190 116473Google Scholar

    [24]

    Xie N, Li Z, Gao X, Fang Y, Zhang Z 2020 Int. J. Refrig. 110 178Google Scholar

    [25]

    Yang J, Jia Y L, Bing N C, Wang L L, Xie H Q, Yu W 2019 Appl. Therm. Eng. 163 114412Google Scholar

    [26]

    Zhang H, Wang L, Xi S, Xie H, Yu W 2021 Renew. Energy 175 307Google Scholar

    [27]

    Liu Y, Yang Y, Li S 2016 J. Mater. Chem. A 10 1039

    [28]

    Li Z, Yang W, Jiang Z, He F, Wu J 2017 Appl. Energy 197 354Google Scholar

    [29]

    Ma X C, Liu Y J, Liu H, Zhang L, Xu B, Xiao F 2018 Sol. Energy Mater. Sol. Cells 188 73Google Scholar

    [30]

    Feng D L, Zang Y Y, Li P, Feng Y H, Yan Y Y, Zhang X X 2021 Compos. Sci. Technol. 210 108832Google Scholar

    [31]

    Yu Z P, Feng D L, Feng Y H, Zhang X X 2022 Compos. Part A: Appl. Sci. Manufact. 152 106703Google Scholar

    [32]

    Yuan P, Zhang P, Liang T, Zhai S P 2019 Appl. Surf. Sci. 485 402Google Scholar

    [33]

    Xie B, Li C, Zhang B, Yang L, Chen J 2020 Energy Built Environ. 1 187

    [34]

    Hekimolu G, Sar A, Kar T, Kele S, Saleh T A 2021 J. Energy Storage 35 102288Google Scholar

    [35]

    Wu S, Chen Y, Chen Z, Wang J, Cai M, Gao J 2021 Sci. Rep. 11 822Google Scholar

    [36]

    Zhao Y J, Sun B, Du P P, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2019 Mater. Res. Express 6 115515Google Scholar

    [37]

    Chen Y, Cui Z, Ding H, Wan Y, Tang Z, Gao J 2018 Int. J. Mol. Sci. 19 3055Google Scholar

    [38]

    Wan Y C, Chen Y, Cui Z X, Ding H, Gao S F, Han Z, Gao J K 2019 Sci. Rep. 9 11535Google Scholar

    [39]

    Das D, Bordoloi U, Muigai H H, Kalita P 2020 J. Energy Storage 30 101403Google Scholar

    [40]

    Yang H Y, Wang Y, Yu Q, Li G, Sun X, Yang R, Zhang Q, Liu F, Di X, Li J 2018 Energy 159 929Google Scholar

    [41]

    Li C, Xie B, He Z, Chen J, Long Y 2019 Renew. Energy 140 862Google Scholar

    [42]

    Zhang W, Zhang X, Zhang X, Yin Z, Liu Y, Fang M, Wu X, Min X, Huang Z 2019 Thermochim. Acta 674 21Google Scholar

    [43]

    Atinafu D G, Dong W, Wang C, Wang G 2018 J. Mater. Chem. A 6 8969Google Scholar

    [44]

    Wen R, Zhang W, Lv Z, Huang Z, Gao W 2018 Mater. Lett. 215 42Google Scholar

    [45]

    Yang Z, Deng Y, Li J 2019 Appl. Therm. Eng. 150 967Google Scholar

  • [1] Yang Xu, Li Jing, Mao Yu, Tao Ke-Ai, Sun Kuan, Chen Shan-Shan, Zhou Yong-Li, Zheng Yu-Jie. Experimental study of single-phase change material thermal diode based on calcium chloride hexahydrate. Acta Physica Sinica, 2024, 73(5): 058301. doi: 10.7498/aps.73.20231686
    [2] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [3] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [4] Liu Ying-Guang, Xue Xin-Qiang, Zhang Jing-Wen, Ren Guo-Liang. Thermal conductivity of materials based on interfacial atomic mixing. Acta Physica Sinica, 2022, 71(9): 093102. doi: 10.7498/aps.71.20211451
    [5] Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin. Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide. Acta Physica Sinica, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [6] Shao Chun-Rui, Li Hai-Yang, Wang Jun, Xia Guo-Dong. Thermal rectification enhancement based on porous structure in bulk materials. Acta Physica Sinica, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [7] Wei Jiang-Tao, Yang Liang-Liang, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Methodology of teasting thermoelectric properties of low-dimensional nanomaterials. Acta Physica Sinica, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [8] Effects of point defects on thermal conductivity in cubic silicon carbide: A molecular dynamics study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211434
    [9] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [10] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] Wu Xiang-Shui, Tang Wen-Ting, Xu Xiang-Fan. Recent progresses of thermal conduction in two-dimensional materials. Acta Physica Sinica, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [12] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [13] Shi Na-Na, Zhao Yan, Feng Chao, Huang Jie, Xu Jia-Yu. Precise control of branch-length of light irradiated gold nanostars and associated thermal performance. Acta Physica Sinica, 2017, 66(8): 086101. doi: 10.7498/aps.66.086101
    [14] Tian Man-Man, Wang Guo-Xiang, Shen Xiang, Chen Yi-Min, Xu Tie-Feng, Dai Shi-Xun, Nie Qiu-Hua. Phase change properties of ZnSb-doped Ge2Sb2Te5 films. Acta Physica Sinica, 2015, 64(17): 176802. doi: 10.7498/aps.64.176802
    [15] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [16] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [17] Wang Jing, Liu Gui-Chang, Li Hong-Ling, Hou Bao-Rong. Study on the thermal conductivity of diamond-like carbon functionally graded material on copper substrate. Acta Physica Sinica, 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [18] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Wei, Yang Mu, Li Jing, Wang Ge. Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15. Acta Physica Sinica, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [19] Wang Jian-Li, Xiong Guo-Ping, Gu Ming, Zhang Xing, Liang Ji. A study on the thermal conductivity of multiwalled carbon nanotube/polypropylene composite. Acta Physica Sinica, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [20] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
Metrics
  • Abstract views:  5190
  • PDF Downloads:  132
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2022
  • Accepted Date:  02 February 2023
  • Available Online:  23 February 2023
  • Published Online:  20 April 2023

/

返回文章
返回