搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光辐照精确调控金纳米星枝杈长度及其光热性能探究

史娜娜 赵艳 冯超 黄杰 徐佳宇

引用本文:
Citation:

光辐照精确调控金纳米星枝杈长度及其光热性能探究

史娜娜, 赵艳, 冯超, 黄杰, 徐佳宇

Precise control of branch-length of light irradiated gold nanostars and associated thermal performance

Shi Na-Na, Zhao Yan, Feng Chao, Huang Jie, Xu Jia-Yu
PDF
导出引用
  • 金纳米星是一种具有尖状结构的多分枝纳米颗粒. 为了使金纳米星枝杈长度可控,利用HEPES作为体系的还原剂、稳定剂及形状诱导剂,在制备过程中进行光辐照,得到的金纳米星枝杈长度比无光辐照时的金纳米星枝杈长度短,而且不同波长光辐照得到的金纳米星枝杈长度有显著不同. 在此基础上,分析了金纳米星枝杈长度变化的物理过程,提出光诱导金纳米星生长过程中枝杈长度变化的理论模型. 测量了不同枝杈长度的金纳米星在光辐照下一定时间内的温度变化,计算了金纳米星的光热转换效率. 实验结果表明,光辐照制备金纳米星能够精确控制金纳米星枝杈长度范围,从而调控金纳米星的光热转换效率.
    Gold nanostars are multi-branched nanoparticles with tip structures. Nanostars have excellent photoelectric properties, which make them able to be used in a variety of optoelectronics devices. Moreover, these stars have good biocompatibility and low toxicity, which opens broad application prospect in the biomedical field. Gold nanostars with admirable optical as well as thermal properties, are thought as a good candidate in cancer treatment that is a hot research topic in recent years. Gold nanostars with different branch-lengths were prepared by the photo-assisted method, and the effect of light was well studied in relation with gold nanostar branch-length. In the solution system, HEPES was used as the reducing agent, stable agent and shape-inducing agent. Under light irradiation, a certain amount of chloroauric acid solution (HAuCl4) was added to the HEPES solution. After a period of time, gold nanostars were prepared. Different wavelengths of irradiating light were selected in this experiment. The wavelength has different effects on the growth of branches associated with gold nanostars. The transmission electron microscope and the ultraviolet-visible-near infrared spectrophotometer were used to analyze the morphology and absorption spectra of gold nanostars. Meanwhile, a nano-measurer software was used to determine branch-lengths of gold nanostars under light irradiation of different wavelengths. The results indicate that the branches of the nanostars under irradiation were shorter than those of nanostars without irradiation. Different branch lengths correspond to different irradiation wavelengths. Based on these results, the physical process of shortening nanostars branches was analyzed, and a theoretical model of changing branch-length in the process of light-induced nanostars growth was proposed. The model indicates that there are two steps when the branch-length is changing. Firstly, the branch-length grows longer with the overall growth of the nanostar. Secondly, the nanostar becomes shorter because of the insatiability of HEPES molecules that are adsorbed on the nanostar surface with the increasing solution temperature. Through a photothermal measurement, a xenon lamp (wavelength 670 nm) was used as a light source to measure the temperature change within 30 min, and then the photothermal conversion efficiency of the gold nanostars was calculated. The results show that the branch-length of gold nanostars can be precisely controlled by light irradiation with slight variation in wavelength. The photothermal conversion efficiency of gold nanostars can also be regulated.
      通信作者: 赵艳, zhaoyan@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51475014)资助的课题.
      Corresponding author: Zhao Yan, zhaoyan@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51475014).
    [1]

    EI-Sayed I H, Huang X H, EI-Sayed M A 2005 Nano Lett. 5 829

    [2]

    Freddi S, Sironi L, D'Antuono R, Morone D, Dona A, Cabrini E, D'Alfonso L, Collini M, Pallavicini P, Baldi G, Maggioni D, Chirico G 2013 Nano Lett. 13 2004

    [3]

    Jain S, Hirst D G, O'Sullivan J M 2012 Br. J. Radiol. 85 101

    [4]

    Ravi S, Vipul B, Minakshi C, Atanu B, Ramesh R B, Murali S 2005 Langmuir 21 10644

    [5]

    EI-Said W A, Kim S U, Choi J W 2015 J. Mater. Chem. C 3 3848

    [6]

    Jo H, Youn H, Lee S, Ban C 2014 J. Mater. Chem. B 2 4862

    [7]

    Liu X L, Wang J H, Liang S, Yang D J, Nan F, Ding S J, Zhou L, Hao Z H, Wang Q Q 2014 J. Phys. Chem. C 118 9659

    [8]

    Chirumamilla M, Gopalakrishnan A, Toma A, Zaccaria R P, Krahne R 2014 Nanotechnology 25 235303

    [9]

    Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria R P, Krahne R, Rondanina E, Leoncini M, Liberale C, De Angelis F, Di Fabrizio E 2014 Adv. Mater. 26 2353

    [10]

    Guerrero-Martinez A, Barbosa S, Pastoriza-Santos I, Liz-Marzan L M 2011 Curr. Opin. Colloid Interface Sci. 16 118

    [11]

    Kawamura G, Nogami M 2009 J. Cryst. Growth 311 4462

    [12]

    Sau T K, Murphy C J 2004 J. Am. Chem. Soc. 129 1733

    [13]

    Xie J P, Lee J Y, Wang D I C 2007 Chem. Mater. 19 2823

    [14]

    Gopalakrishnan A, Chirumamilla M, de Angelis F, Toma A, Zaccaria R P, Krahne R 2014 ACS Nano 8 7986

    [15]

    El-Said W A, Kim S U, Choi J W 2015 J. Mater. Chem. B 3 3848

    [16]

    Wang X C, Li G H, Ding Y, Sun S Q 2014 RSC Adv. 4 30375

    [17]

    Su Q Q, Ma X Y, Dong J, Jiang C Y, Qian W P 2011 ACS Appl. Mater. Interfaces 3 1873

    [18]

    Khoury C G, Vo-Dinh T 2008 J. Phys. Chem. C 112 18849

    [19]

    Jiang K, Smith D A, Pinchuk A 2013 J. Phys. Chem. C 117 27073

    [20]

    Dong S A, Yang F L, He X G, Zhang S W, Fang W 2013 Precious Met. 34 1 (in Chinese) [董守安, 杨辅龙, 何晓光, 张世文, 方卫 2013 贵金属 34 1]

    [21]

    Wang X C 2014 M. S. Thesis (Beijing: Tsinghua University) (in Chinese) [王小翠 2014 硕士学位论文 (北京: 清华大学)]

    [22]

    Bai Y, Long R, Wang C M, Xiong Y J 2013 J. Univ. Sci. Technol. B 43 889 (in Chinese) [柏彧, 龙冉, 王成名, 熊宇杰 2013 中国科学技术大学学报 43 889]

  • [1]

    EI-Sayed I H, Huang X H, EI-Sayed M A 2005 Nano Lett. 5 829

    [2]

    Freddi S, Sironi L, D'Antuono R, Morone D, Dona A, Cabrini E, D'Alfonso L, Collini M, Pallavicini P, Baldi G, Maggioni D, Chirico G 2013 Nano Lett. 13 2004

    [3]

    Jain S, Hirst D G, O'Sullivan J M 2012 Br. J. Radiol. 85 101

    [4]

    Ravi S, Vipul B, Minakshi C, Atanu B, Ramesh R B, Murali S 2005 Langmuir 21 10644

    [5]

    EI-Said W A, Kim S U, Choi J W 2015 J. Mater. Chem. C 3 3848

    [6]

    Jo H, Youn H, Lee S, Ban C 2014 J. Mater. Chem. B 2 4862

    [7]

    Liu X L, Wang J H, Liang S, Yang D J, Nan F, Ding S J, Zhou L, Hao Z H, Wang Q Q 2014 J. Phys. Chem. C 118 9659

    [8]

    Chirumamilla M, Gopalakrishnan A, Toma A, Zaccaria R P, Krahne R 2014 Nanotechnology 25 235303

    [9]

    Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria R P, Krahne R, Rondanina E, Leoncini M, Liberale C, De Angelis F, Di Fabrizio E 2014 Adv. Mater. 26 2353

    [10]

    Guerrero-Martinez A, Barbosa S, Pastoriza-Santos I, Liz-Marzan L M 2011 Curr. Opin. Colloid Interface Sci. 16 118

    [11]

    Kawamura G, Nogami M 2009 J. Cryst. Growth 311 4462

    [12]

    Sau T K, Murphy C J 2004 J. Am. Chem. Soc. 129 1733

    [13]

    Xie J P, Lee J Y, Wang D I C 2007 Chem. Mater. 19 2823

    [14]

    Gopalakrishnan A, Chirumamilla M, de Angelis F, Toma A, Zaccaria R P, Krahne R 2014 ACS Nano 8 7986

    [15]

    El-Said W A, Kim S U, Choi J W 2015 J. Mater. Chem. B 3 3848

    [16]

    Wang X C, Li G H, Ding Y, Sun S Q 2014 RSC Adv. 4 30375

    [17]

    Su Q Q, Ma X Y, Dong J, Jiang C Y, Qian W P 2011 ACS Appl. Mater. Interfaces 3 1873

    [18]

    Khoury C G, Vo-Dinh T 2008 J. Phys. Chem. C 112 18849

    [19]

    Jiang K, Smith D A, Pinchuk A 2013 J. Phys. Chem. C 117 27073

    [20]

    Dong S A, Yang F L, He X G, Zhang S W, Fang W 2013 Precious Met. 34 1 (in Chinese) [董守安, 杨辅龙, 何晓光, 张世文, 方卫 2013 贵金属 34 1]

    [21]

    Wang X C 2014 M. S. Thesis (Beijing: Tsinghua University) (in Chinese) [王小翠 2014 硕士学位论文 (北京: 清华大学)]

    [22]

    Bai Y, Long R, Wang C M, Xiong Y J 2013 J. Univ. Sci. Technol. B 43 889 (in Chinese) [柏彧, 龙冉, 王成名, 熊宇杰 2013 中国科学技术大学学报 43 889]

  • [1] 康亚斌, 袁小朋, 王晓波, 李克伟, 宫殿清, 程旭东. 分层化金属陶瓷光热转换涂层的微结构构筑与热稳定性. 物理学报, 2023, 72(5): 057103. doi: 10.7498/aps.72.20221693
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] 朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣. 木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化. 物理学报, 2023, 72(8): 088801. doi: 10.7498/aps.72.20222466
    [4] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [5] 王亚洲, 马立, 杨权, 耿松超, 林旖旎, 陈涛, 孙立宁. 碳纳米管的可控长度拾取及导电性分析. 物理学报, 2020, 69(6): 068801. doi: 10.7498/aps.69.20191298
    [6] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [7] 李雪, 王亮, 熊建桥, 邵秋萍, 蒋荣, 陈淑芬. 金纳米四面体增强有机太阳电池光吸收及光伏性能研究. 物理学报, 2018, 67(24): 247201. doi: 10.7498/aps.67.20181502
    [8] 洪昕, 王晨晨, 刘江涛, 王晓强, 尹雪洁. 芯帽纳米颗粒的光热性质. 物理学报, 2018, 67(19): 195202. doi: 10.7498/aps.67.20180909
    [9] 刘顺瑞, 聂照庭, 张明磊, 王丽, 冷雁冰, 孙艳军. 利用纳米球提高红外波长上转换探测器效率. 物理学报, 2017, 66(18): 188501. doi: 10.7498/aps.66.188501
    [10] 刘勇波, 菅永军. 具有聚电解质层圆柱形纳米通道中的电动能量转换效率. 物理学报, 2016, 65(8): 084704. doi: 10.7498/aps.65.084704
    [11] 孙志刚, 庞雨雨, 胡靖华, 何雄, 李月仇. 紫外光辐照对TiO2纳米线电输运性能的影响及磁阻效应研究. 物理学报, 2016, 65(9): 097301. doi: 10.7498/aps.65.097301
    [12] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率. 物理学报, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [13] 黄运欢, 李璞. 金纳米棒复合体的消光特性. 物理学报, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [14] 苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权. 金纳米颗粒光散射提高InAs单量子点荧光提取效率. 物理学报, 2015, 64(23): 235201. doi: 10.7498/aps.64.235201
    [15] 刘红侠, 王志, 卓青青, 王倩琼. 总剂量辐照下沟道长度对部分耗尽绝缘体上硅p型场效应晶体管电特性的影响. 物理学报, 2014, 63(1): 016102. doi: 10.7498/aps.63.016102
    [16] 胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌. 深亚微米器件沟道长度对总剂量辐照效应的影响. 物理学报, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [17] 邓青华, 丁磊, 贺少勃, 唐军, 谢旭东, 卢振华, 董一芳. 光参量啁啾脉冲放大系统非线性晶体长度确定及调谐方法研究. 物理学报, 2010, 59(4): 2525-2531. doi: 10.7498/aps.59.2525
    [18] 殷菲, 胡伟达, 全知觉, 张波, 胡晓宁, 李志锋, 陈效双, 陆卫. 激光束诱导电流法提取HgCdTe光伏探测器的电子扩散长度. 物理学报, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [19] 王照亮, 梁金国, 唐大伟, Y. T. Zhu. 单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论. 物理学报, 2008, 57(6): 3391-3396. doi: 10.7498/aps.57.3391
    [20] 张冬仙, 刘 超, 章海军. 微纳米尺度红外光热膨胀效应及新型光热驱动方法研究. 物理学报, 2008, 57(5): 3107-3112. doi: 10.7498/aps.57.3107
计量
  • 文章访问数:  5872
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-01-14
  • 刊出日期:  2017-04-05

/

返回文章
返回