Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase change properties of ZnSb-doped Ge2Sb2Te5 films

Tian Man-Man Wang Guo-Xiang Shen Xiang Chen Yi-Min Xu Tie-Feng Dai Shi-Xun Nie Qiu-Hua

Citation:

Phase change properties of ZnSb-doped Ge2Sb2Te5 films

Tian Man-Man, Wang Guo-Xiang, Shen Xiang, Chen Yi-Min, Xu Tie-Feng, Dai Shi-Xun, Nie Qiu-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • ZnSb-doped Ge2Sb2Te5 films have been deposited by magnetron co-sputtering using separated ZnSb and Ge2Sb2Te5 alloy targets. The concentrations of ZnSb dopant in the ZnSb-added Ge2Sb2Te5 films, measured by using energy dispersive spectroscopy (EDS), are identified to be 5.4, 9.9, 18.7 and 24.3 at. %, respectively. X-ray diffraction (XRD), in situ sheet resistance measurements, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), are used to analyze the relationships among the composition, structures and properties of the films. The sheet resistance as a function of the temperature (R-T) is in situ measured using the four-probe method in a home-made vacuum chamber. It is found that the crystallization temperature of ZnSb-doped Ge2Sb2Te5 films are much higher than that of conventional Ge2Sb2Te5 (~168℃). The higher crystallization temperature is helpful to improve the amorphous thermal stability. Data retention can be obtained by the extrapolated fitting curve based on the Arrhenius equation. It is shown that the values of 10-yr data retention for ZnSb-doped Ge2Sb2Te5 films are higher than that of conventional Ge2Sb2Te5 film (~ 88.9℃). XRD patterns of the as-deposited films when annealed at 200℃, 250℃, 300℃, and 350℃ show that ZnSb-doping can suppress the phase transition from fcc phase to hex phase. XPS spectra are further used to investigate the binding state of (ZnSb)18.7(Ge2Sb2Te5)81.3, suggesting that the Zn–Sb and Zn–Te bonds may exist in an amorphous state. In addition, we have measured the dark-field TEM images, selected area electron diffraction patterns, and high-resolution transmission electron microscopy images of the (ZnSb)18.7(Ge2Sb2Te5)81.3 films. Apparently, the films show a uniform distribution of crystalline phase with the dark areas surrounded by bright ones (Zn–Te or Zn–Sb domain). A static tester using pulsed laser irradiation is employed to investigate the phase transition behavior in nanoseconds. Results show that the ZnSb-doped Ge2Sb2Te5 films exhibit a faster crystallization speed. Among these samples, the (ZnSb)24.3(Ge2Sb2Te5)75.7 film exhibits a higher crystallization temperature of 250℃ and the 10 years data retention is 130.1℃. The duration of time for crystallization of (ZnSb)24.3(Ge2Sb2Te5)75.7 is revealed to be as short as ~64 ns at a given proper laser power 70 mW. A reversible repetitive optical switching behavior can be observed in (ZnSb)24.3(Ge2Sb2Te5)75.7, confirming that the ZnSb doping is responsible for a fast switching and the compound is stable with cycling. These excellent properties indicate that the (ZnSb)24.3(Ge2Sb2Te5)75.7 film is a potential candidate as the high-performance phase change material.
      Corresponding author: Shen Xiang, shenxiang@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377061, 61306147), the Public Project of Zhejiang Province, China (Grant No. 2014C31146), the Young Leaders of the academic climbing project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), and by K. C. Wong Magna Fund at Ningbo University, the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F040002).
    [1]

    Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450

    [2]

    Giusca C E, Stolojan V, Sloan J, Borrnert F, Shiozawa H, Sader K, Rummeli M H, Buchner B, Silva S R 2013 Nano Lett. 13 4020

    [3]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [4]

    Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703

    [5]

    Wuttig M 2005 Nat. Mater. 4 265

    [6]

    Liu B, Song Z T, Zhang T, Feng S L, Chen B 2004 Chin. Phys. 13 1947

    [7]

    Sutou Y, Kamada T, Sumiya M, Saito Y, Koike J 2012 Acta. Mater. 60 872

    [8]

    Zhu M, Wu L C, Song Z T, Rao F, Cai D L, Peng C 2012 Appl. Phys. Lett. 100 122101

    [9]

    Kim Y K, Jeong K, Cho M H, Hwang U, Jeong H S 2007 Appl. Phys. Lett. 90 171920

    [10]

    Seo J H, Song K H, Lee H Y 2008 J. Appl. Phys. 108 064515

    [11]

    Wang G X, Nie Q H, Shen X, Wang R P, Wu L C, Fu J, Xu T F, Dai S X 2012 Appl. Phys. Lett. 101 051906

    [12]

    Wei S J, Zhu H F, Chen K, Xu D, Li J, Gan F X, Zhang X, Xia Y J, Li G H 2011 Appl. Phys. Lett. 98 231910

    [13]

    Zhou X, Wu L, Song Z, Rao F, Zhu M, Peng C, Yao D, Song S, Liu B, Feng S 2012 Appl. Phys. Lett. 101 142104

    [14]

    Singh G, Kaura A, Mukul M, Tripathi S K 2013 J. Mater. Sci. 48 299

    [15]

    Chen Y M, Wang G X, Shen X, Xu T F, Wang R P, Wu L C, Lu Y G, Li J J, Dai S X, Nie Q H 2014 Cryst. Eng. Comm. 16 757

    [16]

    Wuttig M, Steimer C 2007 Appl. Phys. A 87 411

    [17]

    Shen X, Wang G X, Wang R P, W L C, Fu J, Xu T F, Nie Q H 2013 Appl. Phys. Lett. 102 131902

    [18]

    Kim D, Merget F, Laurenzis M, Bolivar P H, Wuttig M 2007 Microsyst. Technol. 13 153

    [19]

    Coombs J H, Jongenelis A P, Es-Spiekman W V, Jacobs B A 1995 J. Appl. phys. 78 4906

    [20]

    Lee T Y, Kim C, Kang Y, Suh D S, Kim K H, Khang Y 2008 Appl. Phys. Lett. 92 101908

    [21]

    Detemple R, Wamwangi D, Bihlmayer G, Wuttig M 2003 Appl. Phys. Lett. 83 2572

    [22]

    Kang M J, Park T J, Wamwangi D, Wang K, Steimer C, Choi S Y, Wuttig M 2007 Microsyst. Technol. 13 153

    [23]

    Ziegler S, Wuttig M 2006 J. Appl. Phys. 99 064907

    [24]

    Wang G X, Shen X, Nie Q H, Wang R P, Wu L C, Lu Y G, Dai S X, Xu T F, Chen Y M 2013 Appl. Phys. Lett. 103 031914

  • [1]

    Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450

    [2]

    Giusca C E, Stolojan V, Sloan J, Borrnert F, Shiozawa H, Sader K, Rummeli M H, Buchner B, Silva S R 2013 Nano Lett. 13 4020

    [3]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [4]

    Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703

    [5]

    Wuttig M 2005 Nat. Mater. 4 265

    [6]

    Liu B, Song Z T, Zhang T, Feng S L, Chen B 2004 Chin. Phys. 13 1947

    [7]

    Sutou Y, Kamada T, Sumiya M, Saito Y, Koike J 2012 Acta. Mater. 60 872

    [8]

    Zhu M, Wu L C, Song Z T, Rao F, Cai D L, Peng C 2012 Appl. Phys. Lett. 100 122101

    [9]

    Kim Y K, Jeong K, Cho M H, Hwang U, Jeong H S 2007 Appl. Phys. Lett. 90 171920

    [10]

    Seo J H, Song K H, Lee H Y 2008 J. Appl. Phys. 108 064515

    [11]

    Wang G X, Nie Q H, Shen X, Wang R P, Wu L C, Fu J, Xu T F, Dai S X 2012 Appl. Phys. Lett. 101 051906

    [12]

    Wei S J, Zhu H F, Chen K, Xu D, Li J, Gan F X, Zhang X, Xia Y J, Li G H 2011 Appl. Phys. Lett. 98 231910

    [13]

    Zhou X, Wu L, Song Z, Rao F, Zhu M, Peng C, Yao D, Song S, Liu B, Feng S 2012 Appl. Phys. Lett. 101 142104

    [14]

    Singh G, Kaura A, Mukul M, Tripathi S K 2013 J. Mater. Sci. 48 299

    [15]

    Chen Y M, Wang G X, Shen X, Xu T F, Wang R P, Wu L C, Lu Y G, Li J J, Dai S X, Nie Q H 2014 Cryst. Eng. Comm. 16 757

    [16]

    Wuttig M, Steimer C 2007 Appl. Phys. A 87 411

    [17]

    Shen X, Wang G X, Wang R P, W L C, Fu J, Xu T F, Nie Q H 2013 Appl. Phys. Lett. 102 131902

    [18]

    Kim D, Merget F, Laurenzis M, Bolivar P H, Wuttig M 2007 Microsyst. Technol. 13 153

    [19]

    Coombs J H, Jongenelis A P, Es-Spiekman W V, Jacobs B A 1995 J. Appl. phys. 78 4906

    [20]

    Lee T Y, Kim C, Kang Y, Suh D S, Kim K H, Khang Y 2008 Appl. Phys. Lett. 92 101908

    [21]

    Detemple R, Wamwangi D, Bihlmayer G, Wuttig M 2003 Appl. Phys. Lett. 83 2572

    [22]

    Kang M J, Park T J, Wamwangi D, Wang K, Steimer C, Choi S Y, Wuttig M 2007 Microsyst. Technol. 13 153

    [23]

    Ziegler S, Wuttig M 2006 J. Appl. Phys. 99 064907

    [24]

    Wang G X, Shen X, Nie Q H, Wang R P, Wu L C, Lu Y G, Dai S X, Xu T F, Chen Y M 2013 Appl. Phys. Lett. 103 031914

  • [1] Yang Xu, Li Jing, Mao Yu, Tao Ke-Ai, Sun Kuan, Chen Shan-Shan, Zhou Yong-Li, Zheng Yu-Jie. Experimental study of single-phase change material thermal diode based on calcium chloride hexahydrate. Acta Physica Sinica, 2024, 73(5): 058301. doi: 10.7498/aps.73.20231686
    [2] Zhu Xiang-Ning, Feng Dai-Li, Feng Yan-Hui, Lin Lin, Zhang Xin-Xin. Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification. Acta Physica Sinica, 2023, 72(8): 088801. doi: 10.7498/aps.72.20222466
    [3] Kang Ya-Bin, Yuan Xiao-Peng, Wang Xiao-Bo, Li Ke-Wei, Gong Dian-Qing, Cheng Xu-Dong. Microstructure building and thermal stability of cermet-based photothermal conversion coatings with layered structures. Acta Physica Sinica, 2023, 72(5): 057103. doi: 10.7498/aps.72.20221693
    [4] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [5] Liu Na, Wang Yi, Li Wen-Bo, Zhang Li-Yan, He Shi-Kun, Zhao Jian-Kun, Zhao Ji-Jun. Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering. Acta Physica Sinica, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [6] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [8] Zhu Xiao-Qin, Hu Yi-Feng. Application of Ge50Te50/Zn15Sb85 nanocomposite multilayer films in high thermal stability and low power phase change memory. Acta Physica Sinica, 2020, 69(14): 146101. doi: 10.7498/aps.69.20200502
    [9] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [10] Lu Shun-Shun, Zhang Jin-Min, Guo Xiao-Tian, Gao Ting-Hong, Tian Ze-An, He Fan, He Xiao-Jin, Wu Hong-Xian, Xie Quan. Thermal stability of compound stucture of silicon nanowire encapsulated in carbon nanotubes. Acta Physica Sinica, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [11] Ma Guo-Liang, Li Xing-Ji, Yang Jian-Qun, Liu Chao-Ming, Hou Chun-Feng. Melting and crystallization behaviours of the electrons irradiated LDPE/MWCNTs composites. Acta Physica Sinica, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [12] Zhou Guang-Hong, Pan Xuan, Zhu Yu-Fu. Exchange bias in BiFeO3/Ni81Fe19 magnetic films and its thermal stability. Acta Physica Sinica, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [13] Lu Dong, Jin Dong-Yue, Zhang Wan-Rong, Zhang Yu-Jie, Fu Qiang, Hu Rui-Xin, Gao Dong, Zhang Qing-Yuan, Huo Wen-Juan, Zhou Meng-Long, Shao Xiang-Peng. Novel microwave power sige heterojunction bipolar transistor with high thermal stability over a wide temperature range. Acta Physica Sinica, 2013, 62(10): 104401. doi: 10.7498/aps.62.104401
    [14] Zhang Zhang, Xiong Xian-Zhong, Yi Jiao-Jiao, Li Jin-Fu. Crystallization behavior and thermal stability of Al-Ni-RE metallic glasses. Acta Physica Sinica, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [15] Yan Jian-Cheng, He Zhi-Bing, Yang Zhi-Lin, Chen Zhi-Mei, Tang Yong-Jian, Wei Jian-Jun. Thermal stability of glow discharge polymer coatings on glass microspheres. Acta Physica Sinica, 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [16] Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Tang Yi, Zhong Jian-Xin. Structure and thermal stability of gold nanowire encapsulated in carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [17] Huang Sheng-Rong, Chen Chao. Analytical calculation of temperature distribution and thermal deformation during doping of Zn in GaN/Al2O3 material induced by nanosecond pulse-width laser. Acta Physica Sinica, 2007, 56(8): 4596-4601. doi: 10.7498/aps.56.4596
    [18] Shen Xiang, Nie Qiu-Hua, Xu Tie-Feng, Gao Yuan. Investigation of spectral properties and thermal stability of Er3+/Yb3+ co-doped tungsten-tellurite glasses. Acta Physica Sinica, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [19] Teng Jiao, Cai Jian-Wang, Xiong Xiao-Tao, Lai Wu-Yan, Zhu Feng-Wu. The establishment and thermal stability of exchange bias in NiFe/FeMn bilayers. Acta Physica Sinica, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [20] Yang Shen-Dong, Ning Zhao-Yuan, Huang Feng, Cheng Shan-Hua, Ye Chao. . Acta Physica Sinica, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
Metrics
  • Abstract views:  6037
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2014
  • Accepted Date:  29 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回