Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transparent conductive ZnO:Al/Cu mesh composite film and its electric heating performance

Lu Yang-Dan Lü Jian-Guo Yang Ru-Qi Lu Bo-Jing Zhu Li-Ping Ye Zhi-Zhen

Citation:

Transparent conductive ZnO:Al/Cu mesh composite film and its electric heating performance

Lu Yang-Dan, Lü Jian-Guo, Yang Ru-Qi, Lu Bo-Jing, Zhu Li-Ping, Ye Zhi-Zhen
PDF
HTML
Get Citation
  • Transparent conductive films (TCFs) play an indispensable role in optoelectronic devices because of their high conductivity and high optical transmittance. In order to obtain indium-free transparent conductive films with better performance, we need to improve the conductivity, while not damaging the transmittance. Metal mesh is highly conductive but prone to oxidation and abrasion, while transparent conductive oxide (TCO) is stable but less conductive. Thus, we composite the metal mesh with the stable TCO to achieve complementary advantages. In this work, we fabricate a hexagonal Cu mesh and then cover the Cu mesh with Al-doped ZnO (AZO) film by using lithography and magnetron sputtering. The line width and length of mesh are 15 µm and 150 µm, respectively, which are not visible to the naked eye. The effect of AZO growth temperature on the properties of such AZO/Cu mesh composite film is studied and the optimal temperature is 300 ℃. By designing the mesh and optimizing the process, the transmittance (400–800 nm), sheet resistance and FoM of AZO/ Cu mesh composite film reach 86.4%, 4.9 Ω/sq and 4.73 × 10–2 Ω–1, respectively, thus possessing both transparent and conductive property. Because of its low cost, competitive optoelectronic performance and stability, the potential applications of AZO/Cu mesh composite film in transparent electronics are fantastic. When used as a transparent conductor to connect LED to 3 V DC power, the luminance of LED in series with AZO/Cu mesh composite film is lighter than that of AZO film and Cu mesh. According to the Ohmic heating effect of electric current passing through a conductor, AZO/Cu mesh composite film can be designed as electric heating film. At low voltage safe for human body, AZO/Cu mesh composite film can implement fast, uniform and stabile heat. In the cyclic electric heating test, the AZO/Cu mesh composite film can be heated rapidly to 175 ℃ all the time, showing a fast temperature response and stable cyclic performance. More importantly, the AZO is itself transparent and conductive and prevents the metal from oxidizing effectively, thus ensuring the overall performance and maintaining the electric heating response. The experimental result and simulation application show that the AZO/Cu mesh composite film has a great potential application in transparent and heating film for defogging and defrosting glass.
      Corresponding author: Lü Jian-Guo, lujianguo@zju.edu.cn ; Ye Zhi-Zhen, yezz@zju.edu.cn
    • Funds: Project supported by the Zhejiang Provincial Key Research and Development Program, China (Grant No. 2021C01030) and the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province, China (Grant No. 2021C01SA301612).
    [1]

    刘宏燕, 颜悦, 望咏林, 伍建华, 张官理, 厉蕾 2015 航空材料学报 35 63Google Scholar

    Liu H Y, Yan Y, Wang Y L, Wu J H, Zhang G L, Li L 2015 J. Aeronautical Mater. 35 63Google Scholar

    [2]

    刘世丽, 辛智青, 李修, 方一, 李亚玲, 莫黎昕, 李路海 2015 功能材料与器件学报 21 13

    Liu S L, Xin Z Q, Li X, Fang Y, Li Y L, Mo L X, Li L H 2015 J. Functional Mater. Dev. 21 13

    [3]

    杨桢林, 费纯纯, 成程, 张宏梅 2019 发光学报 40 238Google Scholar

    Yang Z L, Fei C C, Cheng C, Zhang H M 2019 Chin. J. Luminescence 40 238Google Scholar

    [4]

    Hautcoeur J, Colombel F, Himdi M, Castel X, Cruz E M 2013 IEEE Antennas Wirel. Propag. Lett. 12 933Google Scholar

    [5]

    Zhao Z Y, Xia K Q, Hou Y, Zhang Q H, Ye Z Z, Lu J G 2021 Chem. Soc. Rev. 50 12702Google Scholar

    [6]

    Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631Google Scholar

    [7]

    廖亚琴, 李愿杰, 黄添懋 2014 东方电气评论 28 13Google Scholar

    Liao Y Q, Li Y J, Huang T M 2014 Dongfang Electric. Review 28 13Google Scholar

    [8]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z Z, Zeng Y J, Zhang Y Z, Zhu L P, He H P, Zhao B H 2007 J. Appl. Phys. 101 083705Google Scholar

    [9]

    Lu J G, Ye Z Z, Zeng Y J, Zhu L P, Wang L, Yuan J, Zhao B H, Liang Q L 2006 J. Appl. Phys. 100 073714Google Scholar

    [10]

    李佳, 杨晔, 朱科, 魏铁锋, 王木钦, 朱超挺, 宋伟杰 2015 中国科学: 技术科学 45 941Google Scholar

    Li J, Yang Y, Zhu K, Wei T F, Wang M Q, Zhu C T, Song W J 2015 Sci. Sin. Technol. 45 941Google Scholar

    [11]

    Jiang Q J, Lu J G, Yuan Y L, Cai H, Zhang J, Deng N, Ye Z Z 2014 Mater. Lett. 123 14Google Scholar

    [12]

    Gong L, Lu J, Ye Z 2011 Thin Solid Films 519 3870Google Scholar

    [13]

    Wang Y P, Lu J G, Bie X, Ye Z Z, Li X, Song D, Zhao X Y, Ye W Y 2011 Appl. Surf. Sci. 257 5966Google Scholar

    [14]

    Qin L H, Yan Y Q, Yu G, Zhang Z Y, Zhama T, Sun H 2021 Materials (Basel) 14 4097Google Scholar

    [15]

    Catrysse P B, Fan S 2010 Nano Lett. 10 2944Google Scholar

    [16]

    Afshinmanesh F, Curto A G, Milaninia K M, van Hulst N F, Brongersma M L 2014 Nano Lett. 14 5068Google Scholar

    [17]

    Jang C, Jiang Q J, Lu J G, Ye Z Z 2015 J. Mater. Sci. Technol. 31 1108Google Scholar

    [18]

    Khan A, Lee S, Jang T, Xiong Z, Zhang C, Tang J, Guo L J, Li W D 2016 Small 12 3021Google Scholar

    [19]

    Liu W, Fang Y, Xu Y F, Li X, Li L H 2014 Sci. China Tech. Sci. 57 2536Google Scholar

    [20]

    Choi K H, Kim J Y, Lee Y S, Kim H J 1999 Thin Solid Films 341 152Google Scholar

    [21]

    杨田林, 张之圣, 宋淑梅, 李延辉, 吕茂水, 韩圣浩, 庞智勇 2009 太阳能学报 30 1209Google Scholar

    Yang T L, Zhang Z S, Song S M, Li Y H, Lv M S, Han S H, Pang Z Y 2009 Acta Energiae Solaris Sinica 30 1209Google Scholar

    [22]

    Wang Y P, Lu J G, Bie X, Gong L, Li X, Song D, Zhao X Y, Ye W Y, Ye Z Z 2011 J. Vac. Sci. Technol. A 29 031505Google Scholar

    [23]

    Sahu D R, Huang J L 2007 Microelectron. J. 38 299Google Scholar

    [24]

    Chen Z, Li W, Li R, Zhang Y, Xu G, Cheng H 2013 Langmuir 29 13836Google Scholar

    [25]

    Tran N H, Duong T H, Kim H C 2017 Sci. Rep. 7 15093Google Scholar

    [26]

    Jiu J, Nogi M, Sugahara T, Tokuno T, Araki T, Komoda N, Suganuma K, Uchida H, Shinozaki K 2012 J. Mater. Chem. 22 23561Google Scholar

    [27]

    Li L, Fan Q, Xue H, Zhang S, Wu S, He Z, Wang J 2020 Rsc Adv. 10 9894Google Scholar

    [28]

    Zhu C, Tan R, Song W, Ouyang B, Cai M, Zhou S, Lu Y, Li N 2018 Mater. Res. Express. 5 066427Google Scholar

    [29]

    Zhou W X, Chen J, Li Y, Wang D B, Chen J Y, Feng X M, Huang Z D, Liu R Q, Lin X J, Zhang H M, Mi B X, Ma Y W 2016 ACS Appl. Mater. Interfaces 8 11122Google Scholar

    [30]

    Kang J, Kim H, Kim K S, Lee S K, Bae S, Ahn J H, Kim Y J, Choi J B, Hong B H 2011 Nano Lett. 11 5154Google Scholar

    [31]

    Kim Y, Lee H R, Saito T, Nishi Y 2017 Appl. Phys. Lett. 110 153301Google Scholar

    [32]

    Vosgueritchian M, Lipomi D J, Bao Z 2012 Adv. Funct. Mater. 22 421Google Scholar

    [33]

    Kim Y H, Sachse C, Machala M L, May C, Müller-Meskamp L, Leo K 2011 Adv. Funct. Mater. 21 1076Google Scholar

    [34]

    Li H, Liu Y, Su A, Wang J, Duan Y 2019 Sci. Rep. 9 17998Google Scholar

    [35]

    Kim T H, Choi B H, Park J S, Lee S M, Lee Y S, Park L S 2010 Mol. Cryst. Liq. Cryst. 520 485Google Scholar

    [36]

    Acosta M, Mendez-Gamboa J, Riech I, Acosta C, Zambrano M 2019 Superlattices Microstruct. 127 49Google Scholar

  • 图 1  AZO/Cu网格复合薄膜的(a)—(d) 制备和(e) 电加热测试示意图

    Figure 1.  Schematic illustration of the (a)–(d) fabrication and (e) electric heating test of AZO/Cu mesh composite film.

    图 2  不同AZO生长温度下制备的AZO/Cu网格复合膜的XRD图

    Figure 2.  XRD patterns of AZO/Cu mesh composite films deposited at different AZO growth temperatures.

    图 3  在(a) 100 ℃, (b) 200 ℃, (c) 300 ℃, (d) 400 ℃生长AZO后制备的AZO/Cu网格复合膜的SEM图; 300 ℃生长AZO后制备的AZO/Cu网格复合膜的(e)光学显微镜图和(f)照片

    Figure 3.  SEM images of AZO/Cu mesh composite films deposited at different AZO growth temperatures of (a) 100 ℃, (b) 200 ℃, (c) 300 ℃, (d) 400 ℃; (e) microscope image and (f) photo of AZO/Cu mesh composite film when AZO is grown at 300 ℃.

    图 4  (a) AZO/Cu网格复合膜的电阻率、霍尔迁移率、载流子浓度与AZO生长温度的关系; (b) AZO/Cu网格复合膜的透射光谱 (AZO生长温度为300 ℃); (c) AZO/Cu网格复合膜的平均透过率(400—800 nm)、品质因数与AZO生长温度的关系; (d) 现有TCFs的性能对比

    Figure 4.  (a) Resistivity, Hall mobility and carrier concentrations of AZO/Cu mesh composite films as a function of AZO growth temperatures; (b) transmission spectrum of AZO/Cu mesh composite film (AZO is grown at 300 ℃); (c) average transmittance (400–800 nm) and FoM of AZO/Cu mesh composite film as a function of AZO growth temperatures; (d) performance comparison of TCFs.

    图 5  (a)不同厚度的AZO/Cu网格复合膜在5 V下的温度响应; (b)分别与AZO透明电极、AZO/Cu网格复合透明电极、Cu网格透明电极串联的LED在3 V电压下的发光亮度

    Figure 5.  (a) Temperature response of AZO/Cu mesh composite films of different thickness at 5 V; (b) luminance of LED in series with AZO, AZO/Cu mesh composite film, and Cu mesh under 3 V.

    图 6  红外相机拍摄AZO/Cu网格复合膜表面温度分布的(a)装置图及所得到的(b)红外热分布图; AZO/Cu网格复合膜与单层Cu网格、单层AZO膜在5 V下的(c)温度响应和(d)循环性能

    Figure 6.  (a) Measurement setup and (b) the thermal radiation of AZO/Cu mesh composite film measured with an infrared camera; (c) temperature response and (d) cyclic performance of AZO/Cu mesh composite film, Cu mesh and AZO film at 5 V.

  • [1]

    刘宏燕, 颜悦, 望咏林, 伍建华, 张官理, 厉蕾 2015 航空材料学报 35 63Google Scholar

    Liu H Y, Yan Y, Wang Y L, Wu J H, Zhang G L, Li L 2015 J. Aeronautical Mater. 35 63Google Scholar

    [2]

    刘世丽, 辛智青, 李修, 方一, 李亚玲, 莫黎昕, 李路海 2015 功能材料与器件学报 21 13

    Liu S L, Xin Z Q, Li X, Fang Y, Li Y L, Mo L X, Li L H 2015 J. Functional Mater. Dev. 21 13

    [3]

    杨桢林, 费纯纯, 成程, 张宏梅 2019 发光学报 40 238Google Scholar

    Yang Z L, Fei C C, Cheng C, Zhang H M 2019 Chin. J. Luminescence 40 238Google Scholar

    [4]

    Hautcoeur J, Colombel F, Himdi M, Castel X, Cruz E M 2013 IEEE Antennas Wirel. Propag. Lett. 12 933Google Scholar

    [5]

    Zhao Z Y, Xia K Q, Hou Y, Zhang Q H, Ye Z Z, Lu J G 2021 Chem. Soc. Rev. 50 12702Google Scholar

    [6]

    Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631Google Scholar

    [7]

    廖亚琴, 李愿杰, 黄添懋 2014 东方电气评论 28 13Google Scholar

    Liao Y Q, Li Y J, Huang T M 2014 Dongfang Electric. Review 28 13Google Scholar

    [8]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z Z, Zeng Y J, Zhang Y Z, Zhu L P, He H P, Zhao B H 2007 J. Appl. Phys. 101 083705Google Scholar

    [9]

    Lu J G, Ye Z Z, Zeng Y J, Zhu L P, Wang L, Yuan J, Zhao B H, Liang Q L 2006 J. Appl. Phys. 100 073714Google Scholar

    [10]

    李佳, 杨晔, 朱科, 魏铁锋, 王木钦, 朱超挺, 宋伟杰 2015 中国科学: 技术科学 45 941Google Scholar

    Li J, Yang Y, Zhu K, Wei T F, Wang M Q, Zhu C T, Song W J 2015 Sci. Sin. Technol. 45 941Google Scholar

    [11]

    Jiang Q J, Lu J G, Yuan Y L, Cai H, Zhang J, Deng N, Ye Z Z 2014 Mater. Lett. 123 14Google Scholar

    [12]

    Gong L, Lu J, Ye Z 2011 Thin Solid Films 519 3870Google Scholar

    [13]

    Wang Y P, Lu J G, Bie X, Ye Z Z, Li X, Song D, Zhao X Y, Ye W Y 2011 Appl. Surf. Sci. 257 5966Google Scholar

    [14]

    Qin L H, Yan Y Q, Yu G, Zhang Z Y, Zhama T, Sun H 2021 Materials (Basel) 14 4097Google Scholar

    [15]

    Catrysse P B, Fan S 2010 Nano Lett. 10 2944Google Scholar

    [16]

    Afshinmanesh F, Curto A G, Milaninia K M, van Hulst N F, Brongersma M L 2014 Nano Lett. 14 5068Google Scholar

    [17]

    Jang C, Jiang Q J, Lu J G, Ye Z Z 2015 J. Mater. Sci. Technol. 31 1108Google Scholar

    [18]

    Khan A, Lee S, Jang T, Xiong Z, Zhang C, Tang J, Guo L J, Li W D 2016 Small 12 3021Google Scholar

    [19]

    Liu W, Fang Y, Xu Y F, Li X, Li L H 2014 Sci. China Tech. Sci. 57 2536Google Scholar

    [20]

    Choi K H, Kim J Y, Lee Y S, Kim H J 1999 Thin Solid Films 341 152Google Scholar

    [21]

    杨田林, 张之圣, 宋淑梅, 李延辉, 吕茂水, 韩圣浩, 庞智勇 2009 太阳能学报 30 1209Google Scholar

    Yang T L, Zhang Z S, Song S M, Li Y H, Lv M S, Han S H, Pang Z Y 2009 Acta Energiae Solaris Sinica 30 1209Google Scholar

    [22]

    Wang Y P, Lu J G, Bie X, Gong L, Li X, Song D, Zhao X Y, Ye W Y, Ye Z Z 2011 J. Vac. Sci. Technol. A 29 031505Google Scholar

    [23]

    Sahu D R, Huang J L 2007 Microelectron. J. 38 299Google Scholar

    [24]

    Chen Z, Li W, Li R, Zhang Y, Xu G, Cheng H 2013 Langmuir 29 13836Google Scholar

    [25]

    Tran N H, Duong T H, Kim H C 2017 Sci. Rep. 7 15093Google Scholar

    [26]

    Jiu J, Nogi M, Sugahara T, Tokuno T, Araki T, Komoda N, Suganuma K, Uchida H, Shinozaki K 2012 J. Mater. Chem. 22 23561Google Scholar

    [27]

    Li L, Fan Q, Xue H, Zhang S, Wu S, He Z, Wang J 2020 Rsc Adv. 10 9894Google Scholar

    [28]

    Zhu C, Tan R, Song W, Ouyang B, Cai M, Zhou S, Lu Y, Li N 2018 Mater. Res. Express. 5 066427Google Scholar

    [29]

    Zhou W X, Chen J, Li Y, Wang D B, Chen J Y, Feng X M, Huang Z D, Liu R Q, Lin X J, Zhang H M, Mi B X, Ma Y W 2016 ACS Appl. Mater. Interfaces 8 11122Google Scholar

    [30]

    Kang J, Kim H, Kim K S, Lee S K, Bae S, Ahn J H, Kim Y J, Choi J B, Hong B H 2011 Nano Lett. 11 5154Google Scholar

    [31]

    Kim Y, Lee H R, Saito T, Nishi Y 2017 Appl. Phys. Lett. 110 153301Google Scholar

    [32]

    Vosgueritchian M, Lipomi D J, Bao Z 2012 Adv. Funct. Mater. 22 421Google Scholar

    [33]

    Kim Y H, Sachse C, Machala M L, May C, Müller-Meskamp L, Leo K 2011 Adv. Funct. Mater. 21 1076Google Scholar

    [34]

    Li H, Liu Y, Su A, Wang J, Duan Y 2019 Sci. Rep. 9 17998Google Scholar

    [35]

    Kim T H, Choi B H, Park J S, Lee S M, Lee Y S, Park L S 2010 Mol. Cryst. Liq. Cryst. 520 485Google Scholar

    [36]

    Acosta M, Mendez-Gamboa J, Riech I, Acosta C, Zambrano M 2019 Superlattices Microstruct. 127 49Google Scholar

  • [1] Liao Dun-Wei, Zheng Yue-Jun, Chen Qiang, Ding Liang, Gao Mian, Fu Yun-Qi. Preparation and performance improvement of metal grid transparent conductive film based on crack template method. Acta Physica Sinica, 2022, 71(15): 154201. doi: 10.7498/aps.71.20220101
    [2] Guo Jia-Jun, Dong Jing-Yu, Kang Xin, Chen Wei, Zhao Xu. Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory. Acta Physica Sinica, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [3] Wu Jing-Jing, Tang Xin, Long Fei, Tang Bi-Yu. Effect of ZnO twin grain boundary on p-type conductivity of VZn-NO-H complex:a GGA+U study. Acta Physica Sinica, 2017, 66(13): 137101. doi: 10.7498/aps.66.137101
    [4] Li Yu-Jin, Yuan Xiu-Hua, Zhao Ming, Wang Yun-He. Lateral mode suppression and experiment for the ZnO ring thin-film bulk acoustic resonator (Retracted)  . Acta Physica Sinica, 2015, 64(22): 224601. doi: 10.7498/aps.64.224601
    [5] Huang Li-Jing, Ren Nai-Fei, Li Bao-Jia, Zhou Ming. Effects of laser irradiation on the photoelectric properties of thermal-annealed metal/fluorine-doped tin oxide transparent conductive films. Acta Physica Sinica, 2015, 64(3): 034211. doi: 10.7498/aps.64.034211
    [6] Zhu Hui-Qun, Li Yi, Ye Wei-Jie, Li Chun-Bo. Thermochromic properties of W-doped VO2/ZnO nanocomposite films with flower structures. Acta Physica Sinica, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [7] Li Ming-Jie, Gao Hong, Li Jiang-Lu, Wen Jing, Li Kai, Zhang Wei-Guang. Electrical properties of single ZnO nanobelt in low temperature. Acta Physica Sinica, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [8] Wu Ping, Zhang Jie, Li Xi-Feng, Chen Ling-Xiang, Wang Lei, Lü Jian-Guo. Ultraviolet photoresponse of ZnO thin-film transistor fabricated at room temperature. Acta Physica Sinica, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [9] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [10] Li Yi, Zhu Hui-Qun, Zhou Sheng, Huang Yi-Ze, Tong Guo-Xiang, Sun Ruo-Xi, Zhang Yu-Ming, Zheng Qiu-Xin, Li Liu, Shen Yu-Jian, Fang Bao-Ying. Study on thermochromic properties of VO2/ZnO nanocrystalline composite films. Acta Physica Sinica, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [11] Bao Shan-Yong, Dong Wu-Jun, Xu Xing, Luan Tian-Bao, Li Jie, Zhang Qing-Yu. Influence of oxygen partial pressure on the crystal quality and optical properties of Mg-doped ZnO films. Acta Physica Sinica, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [12] Chen Zhao-Quan, Liu Ming-Hai, Liu Yu-Ping, Chen Wei, Luo Zhi-Qing, Hu Xi-Wei. Fabrication of transparent conductive AZO (ZnO:Al) film by plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2009, 58(6): 4260-4266. doi: 10.7498/aps.58.4260
    [13] Wu Chen-Guo, Shen Jie, Li Dong, Ma Guo-Hong. Terahertz transmission properties of transparent conducting molybdenum-doped ZnO films. Acta Physica Sinica, 2009, 58(12): 8623-8629. doi: 10.7498/aps.58.8623
    [14] Cui Xiu-Zhi, Zhang Tian-Chong, Mei Zeng-Xia, Liu Zhang-Long, Liu Yao-Ping, Guo Yang, Su Xi-Yu, Xue Qi-Kun, Du Xiao-Long. Influence of wet etching on the morphologies of Si patterned substrates and ZnO epilayers. Acta Physica Sinica, 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [15] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [17] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [18] Liu Xue-Chao, Shi Er-Wei, Song Li-Xin, Zhang Hua-Wei, Chen Zhi-Zhan. Magnetic and optical properties of Co doped ZnO powders synthesized by solid-state reaction. Acta Physica Sinica, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [19] Li Yong, Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Study of ZnO film growth by reactive magnetron sputtering using plasma emission spectra. Acta Physica Sinica, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [20] Yuan Hong-Tao, Zhang Yao, Gu Jing-Hua. A study on the in-situ growth of highly oriented ZnO whisker. Acta Physica Sinica, 2004, 53(2): 646-650. doi: 10.7498/aps.53.646
Metrics
  • Abstract views:  5144
  • PDF Downloads:  109
  • Cited By: 0
Publishing process
  • Received Date:  23 March 2022
  • Accepted Date:  20 April 2022
  • Available Online:  05 September 2022
  • Published Online:  20 September 2022

/

返回文章
返回