Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel dual-direction electrostatic discharge device with lateral PNP transistor

Liu Jing Dang Yue-Dong Liu Hui-Ting Zhao Yan

Citation:

Novel dual-direction electrostatic discharge device with lateral PNP transistor

Liu Jing, Dang Yue-Dong, Liu Hui-Ting, Zhao Yan
PDF
HTML
Get Citation
  • With the shrinking of semiconductor technology and the increasing of integrated circuits, electrostatic discharge (ESD) as a common natural phenomenon has become one of the main reasons for the failure and reliability reduction of electronic products in integrated circuits. A novel dual-direction ESD device (PNP_DDSCR) with embedded lateral PNP transistor is proposed for diminishing ESD damage. The response process and current transportation of PNP_DDSCR under different ESD stress modes are investigated. Comparative analyses between conventional DDSCR and PNP_DDSCR are executed by TCAD simulation. On the stage of device triggering, the embedded lateral PNP transistor inner DDSCR system provides triggering current for device. The injection efficiency of parasitic transistor in the DDSCR system is improved, and the positive feedback system is promoted. Thus, the holding voltage of PNP_DDSCR is higher than that of conventional DDSCR. At the same time, an extra triggering path introduced by embedded lateral PNP transistor of PNP_DDSCR makes the total triggering path of device shorten. Therefore, the transient overshoot voltage of PNP_DDSCR is lower than that of DDSCR. For thermal performance, most of the heat first accumulates near the lateral PNP transistor , and then the peak point of heat turns to main SCR path with the conduction of PNP_DDSCR. The heat accumulation in PNP_DDSCR is shared by the path of embedded lateral PNP transistor. As a result, the average temperature in PNP_DDSCR is lower than that in DDSCR and the ability of PNP_DDSCR to dissipate heat is more perfect. Comparing with DDSCR, the conclusions are obtained. Under the condition of transmission line pulse (TLP) test simulation analyses, the triggering voltage is reduced by 31%, the holding voltage is increased by 16.8%, the ESD design window is optimized by 44.5%, and on-resistance is lower. When TLP stress is 2.67 A, the average temperature of PNP_DDSCR is much lower than that of traditional DDSCR in the whole conduction process. With the increase of pulse lasting time, average temperature difference between two devices becomes great further. According to the very fast TLP (VF-TLP) testing results, clamping capability of PNP_DDSCR under transient overshoot voltage is more stable under the condition of fast turn-on speed. When the VF-TLP stress is 0.1 A, the overshoot voltage of PNP_DDSCR device is the 37% of that of DDSCR device while the PNP_DDSCR maintains a relatively fast triggering speed. Thus, the ESD protection capability of PNP_DDSCR is superior.
      Corresponding author: Liu Jing, jingliu@xaut.edu.cn
    • Funds: Project supported by the Key Research and Development of Shaanxi Province, China (Grant No. 2022GY-016).
    [1]

    Zhou Z J, Jin X L 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS) Hangzhou, China, December 14–16, 2017 p1

    [2]

    Do K I, Lee B S, Chae H G, Seo J J, Koo Y S 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS) Bern, Switzerland, December 20–22, 2018 p524

    [3]

    Zhou Z J, Jin X L, Wang Y, Dong P 2019 IEEE 13th International Conference on ASIC (ASICON) Chongqing, China, October 29th-November 1st, 2019 p1

    [4]

    Du F B, Liu Z W, Liu J Z, Wang J, Liou J J 2019 IEEE Trans. Device Mater. Rel. 19 169Google Scholar

    [5]

    Da W L, Gijs d R, Wei J T, Theo S, Albert J H 2018 IEEE Electron Device Lett. 39 331Google Scholar

    [6]

    Do K I, Lee B S, Koo Y S 2019 IEEE J. Electron Devi. 7 601Google Scholar

    [7]

    Do K I, Song B B, Koo Y S 2020 IEEE Trans. Electron Devi. 67 5020Google Scholar

    [8]

    Zhu L, Liang H L, Gu X F, Xu J 2020 Chin. Phys. B 29 652Google Scholar

    [9]

    Qi Z, Qiao M, He Y T, Zhang B 2017 Chin. Phys. B 26 350Google Scholar

    [10]

    Huang C Y, Chen Q K, Chi J F, Huang T H 2021 IEEE Trans. Device Mater. Rel. 21 64Google Scholar

    [11]

    Du F B, Hou F, Song W Q, Chen L, Nie Y L, Qing Y H, Xu Y C, Liu J Z, Liu Z W, Liou J J 2020 IEEE Trans. Electron Devi. 67 576Google Scholar

    [12]

    Du F B, Chang K C, Lin X N, Hou F, Zhang Y X, Han A R, Luo X, Liu Z W 2022 IEEE Trans. Electron Devi. 69 3490Google Scholar

    [13]

    Do K I, Koo Y S 2020 IEEE J. Electron Devi. 8 635Google Scholar

    [14]

    Wu M, Chen Z J 2021 9th International Symposium on Next Generation Electronics (ISNE) Changsha, China, July 9–11, 2021 p1

    [15]

    Zeng J, Dong S R, Liou J J, Han Y, Zhong L, Wang W H 2015 IEEE Trans. Electron Devi. 62 606Google Scholar

    [16]

    Du F B, Jiang G J, Huang M C, Zou K P, Hou F, Song W Q, Liu J Z, Xiong X L, Hou L L, Liu Z W, Liou J J 2021 IEEE Trans. Electron Devi. 68 6338Google Scholar

    [17]

    Liu J Z, Liu Y L, Han A R, Nie Y L, Huang Q P, Liu Z W 2022 IEEE Trans. Electron Devi. 69 2534Google Scholar

    [18]

    Zhou Z J, Jin X L, Wang Y, Dong P 2021 Chin. Phys. B 30 610Google Scholar

    [19]

    Wang Y, Jin X L, Peng Y, Luo J, Yang J, Zheng Z W, Jiang L Y, Zhong Z Y 2021 IEEE J. Emerg. Sel. Topics Power Electron. 9 994Google Scholar

    [20]

    De R, Gijs 2018 IEEE J. Electron Devices Soc. 6 1097Google Scholar

    [21]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第187—201, 415—434页

    Simon M, Kork K(translated by Geng L, Zhang R Z) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi’an: Xi’an Jiaotong University Press) pp187–201, 415–434(in Chinese)

    [22]

    约瑟夫 L, 海因里希 S, 乌维 S, 里克 D D著 (卞抗, 杨莹, 刘静, 蒋荣舟 译) 2019 功率半导体器件-原理、特性和可靠性 (第2版) (北京: 机械工业出版社) 第248—254页

    Josef L, Heinrich S, Uwe S, Rik D D (translated by Bian K, Yang Y, Liu J, Jiang R Z) 2019 Semiconductor Power Devices: Physics, Characteristics, Reliability (2nd Ed.) (Beijing: China Machine Press) pp248–254 (in Chinese)

    [23]

    Chen Q, Ma R, Zhang W, Lu F, Wang C K, Liang O, Zhang F L, Li C, Tang H, Xie Y H, Wang A 2016 IEEE Trans. Electron Devi. 63 3205Google Scholar

  • 图 1  PNP_DDSCR器件结构剖面图与等效电路图

    Figure 1.  Structural cross-section and equivalent circuit diagram of PNP _ DDSCR device.

    图 2  DDSCR器件结构剖面图与等效电路图

    Figure 2.  Structural cross-section and equivalent circuit diagram of DDSCR device.

    图 3  DDSCR与PNP_DDSCR的TLP仿真测试I-V曲线对比

    Figure 3.  Comparison of TLP simulation test I-V curves between DDSCR and PNP_DDSCR.

    图 4  内嵌PNP晶体管电流传输示意图

    Figure 4.  Schematic diagram of embedded PNP transistor current transmission.

    图 5  PNP_DDSCR器件T1端子施加不同应力TLP电流时的电压响应

    Figure 5.  Voltage response of PNP_DDSCR device T1 terminal when TLP current with different stress is applied.

    图 6  PNP_DDSCR器件碰撞电离分布图 (a) T1端子应力为2×10–7A TLP电流; (b) T1端子应力为3×10–7 A TLP电流

    Figure 6.  Impact ionization distribution diagram of PNP_ DDSCR device: (a) T1 terminal stress is 2×10–7 A TLP current; (b) T1 terminal stress is 3×10–7 A TLP current.

    图 7  PNP_DDSCR器件电流密度分布图 (a) T1端子应力为2×10–7 A TLP电流; (b) T1端子应力为3×10–7 A TLP电流

    Figure 7.  Current density distribution diagram of PNP_ DDSCR device: (a) T1 terminal stress is 2×10–7 A TLP current; (b) T1 terminal stress is 3×10–7 A TLP current.

    图 8  T1端子应力为0.08 A TLP电流的电流密度分布图 (a) DDSCR器件电流密度分布图; (b) PNP_DDSCR电流密度分布图

    Figure 8.  Current density distribution diagram of 0.08 A TLP current at T1 terminal: (a) Current density distribution diagram of DDSCR device; (b) current density distribution diagram of PNP_DDSCR device.

    图 9  T1端子应力为2.68 A TLP电流的最高温度随时间的变化过程对比图

    Figure 9.  The temperature changing processes with time for T1 TLP stress of 2.68 A.

    图 10  DDSCR器件温度分布图

    Figure 10.  Temperature distribution diagram of DDSCR device.

    图 11  图9中三点PNP_DDSCR器件导通过程温度分布图 (a) A点; (b) B点; (c) C

    Figure 11.  Temperature distribution of PNP _ DDSCR device at different point in Fig.9: (a) Point A; (b) point B; (c) point C.

    图 12  T1端子应力为2.68 A TLP电流的单位面积平均温度随时间的变化过程对比图

    Figure 12.  The change processes of average temperature per unit area with time when T1 TLP stress is 2.68 A.

    图 13  电流-过冲电压曲线对比图

    Figure 13.  Comparison of current-overshoot voltage curve.

    图 14  0.1 A VF-TLP响应过程对比图

    Figure 14.  Comparison of VF-TLP response process at 0.1 A.

    图 15  0.1 A VF-TLP脉冲强度不同时刻电势分布图 (a) 1×10–10 s时刻DDSCR电势分布图; (b) 1×10–10 s时刻PNP_DDSCR电势分布图; (c) 8×10–9 s时刻DDSCR电势分布图; (d) 8×10–9 s时刻PNP_DDSCR电势分布图

    Figure 15.  Potential distribution diagram of 0.1 A VF-TLP pulse intensity at different times: (a) DDSCR potential distribution diagram at 1×10–10 s; (b) potential distribution diagram of PNP_DDSCR at 1×10–10 s; (c) DDSCR potential distribution diagram at 8×10–9 s; (d) potential distribution diagram of PNP_DDSCR at 8×10–9 s.

    表 1  PNP_DDSCR的关键尺寸表

    Table 1.  Critical dimensions of PNP_ DDSCR.

    名称尺寸/μm
    DDSCRPNP_DDSCR
    D11.61.6
    D20.30.3
    D31.01.0
    D40.60.6
    DownLoad: CSV

    表 2  掺杂浓度参数表

    Table 2.  Doping profile.

    区域(Layer)掺杂类型掺杂浓度/cm–3
    P_SubBoron1×1016
    N_BurPhosphorus1×1019
    P_WellBoron1×1017
    N_WellPhosphorus1×1017
    N+Phosphorus1×1020
    P+Boron1×1020
    DownLoad: CSV
  • [1]

    Zhou Z J, Jin X L 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS) Hangzhou, China, December 14–16, 2017 p1

    [2]

    Do K I, Lee B S, Chae H G, Seo J J, Koo Y S 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS) Bern, Switzerland, December 20–22, 2018 p524

    [3]

    Zhou Z J, Jin X L, Wang Y, Dong P 2019 IEEE 13th International Conference on ASIC (ASICON) Chongqing, China, October 29th-November 1st, 2019 p1

    [4]

    Du F B, Liu Z W, Liu J Z, Wang J, Liou J J 2019 IEEE Trans. Device Mater. Rel. 19 169Google Scholar

    [5]

    Da W L, Gijs d R, Wei J T, Theo S, Albert J H 2018 IEEE Electron Device Lett. 39 331Google Scholar

    [6]

    Do K I, Lee B S, Koo Y S 2019 IEEE J. Electron Devi. 7 601Google Scholar

    [7]

    Do K I, Song B B, Koo Y S 2020 IEEE Trans. Electron Devi. 67 5020Google Scholar

    [8]

    Zhu L, Liang H L, Gu X F, Xu J 2020 Chin. Phys. B 29 652Google Scholar

    [9]

    Qi Z, Qiao M, He Y T, Zhang B 2017 Chin. Phys. B 26 350Google Scholar

    [10]

    Huang C Y, Chen Q K, Chi J F, Huang T H 2021 IEEE Trans. Device Mater. Rel. 21 64Google Scholar

    [11]

    Du F B, Hou F, Song W Q, Chen L, Nie Y L, Qing Y H, Xu Y C, Liu J Z, Liu Z W, Liou J J 2020 IEEE Trans. Electron Devi. 67 576Google Scholar

    [12]

    Du F B, Chang K C, Lin X N, Hou F, Zhang Y X, Han A R, Luo X, Liu Z W 2022 IEEE Trans. Electron Devi. 69 3490Google Scholar

    [13]

    Do K I, Koo Y S 2020 IEEE J. Electron Devi. 8 635Google Scholar

    [14]

    Wu M, Chen Z J 2021 9th International Symposium on Next Generation Electronics (ISNE) Changsha, China, July 9–11, 2021 p1

    [15]

    Zeng J, Dong S R, Liou J J, Han Y, Zhong L, Wang W H 2015 IEEE Trans. Electron Devi. 62 606Google Scholar

    [16]

    Du F B, Jiang G J, Huang M C, Zou K P, Hou F, Song W Q, Liu J Z, Xiong X L, Hou L L, Liu Z W, Liou J J 2021 IEEE Trans. Electron Devi. 68 6338Google Scholar

    [17]

    Liu J Z, Liu Y L, Han A R, Nie Y L, Huang Q P, Liu Z W 2022 IEEE Trans. Electron Devi. 69 2534Google Scholar

    [18]

    Zhou Z J, Jin X L, Wang Y, Dong P 2021 Chin. Phys. B 30 610Google Scholar

    [19]

    Wang Y, Jin X L, Peng Y, Luo J, Yang J, Zheng Z W, Jiang L Y, Zhong Z Y 2021 IEEE J. Emerg. Sel. Topics Power Electron. 9 994Google Scholar

    [20]

    De R, Gijs 2018 IEEE J. Electron Devices Soc. 6 1097Google Scholar

    [21]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第187—201, 415—434页

    Simon M, Kork K(translated by Geng L, Zhang R Z) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi’an: Xi’an Jiaotong University Press) pp187–201, 415–434(in Chinese)

    [22]

    约瑟夫 L, 海因里希 S, 乌维 S, 里克 D D著 (卞抗, 杨莹, 刘静, 蒋荣舟 译) 2019 功率半导体器件-原理、特性和可靠性 (第2版) (北京: 机械工业出版社) 第248—254页

    Josef L, Heinrich S, Uwe S, Rik D D (translated by Bian K, Yang Y, Liu J, Jiang R Z) 2019 Semiconductor Power Devices: Physics, Characteristics, Reliability (2nd Ed.) (Beijing: China Machine Press) pp248–254 (in Chinese)

    [23]

    Chen Q, Ma R, Zhang W, Lu F, Wang C K, Liang O, Zhang F L, Li C, Tang H, Xie Y H, Wang A 2016 IEEE Trans. Electron Devi. 63 3205Google Scholar

  • [1] Li Ming-Zhu, Cai Xiao-Wu, Zeng Chuan-Bin, Li Xiao-Jing, Li Duo-Li, Ni Tao, Wang Juan-Juan, Han Zheng-Sheng, Zhao Fa-Zhan. Effect of high-temperature on holding characteristics in MOSFET ESD protecting device. Acta Physica Sinica, 2022, 71(12): 128501. doi: 10.7498/aps.71.20220172
    [2] Cheng Guang-Gui, Zhang Wei, Fang Jun, Jiang Shi-Yu, Ding Jian-Ning, Noshir S. Pesika, Zhang Zhong-Qiang, Guo Li-Qiang, Wang Ying. Fabrication of triboelectric nanogenerator with textured surface and its electric output performance. Acta Physica Sinica, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [3] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Su Bin, Wang Bin, Wang Guan-Yu. Physical compact modeling for threshold voltage of strained Si NMOSFET. Acta Physica Sinica, 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [4] Wu Jun-Ke, Zhou Luo-Wei, Lu Wei-Guo. A unified bifurcation control strategy for voltage source inverter. Acta Physica Sinica, 2012, 61(21): 210202. doi: 10.7498/aps.61.210202
    [5] Chen Dai-Bing, Wang Dong, Qin Fen, Wen Jie, Jin Xiao, An Hai-Shi, Zhang Xin-Kai. Relation analysis between starting voltage and input voltage for a magneticaly insulated linear oscillator. Acta Physica Sinica, 2012, 61(1): 012901. doi: 10.7498/aps.61.012901
    [6] Qu Jiang-Tao, Zhang He-Ming, Wang Guan-Yu, Wang Xiao-Yan, Hu Hui-Yong. Threshold voltage model for quantum-well channelpMOSFET with poly SiGe gate. Acta Physica Sinica, 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [7] Dong Gang, Liu Jia, Xue Meng, Yang Yin-Tang. Performance optimization of global interconnect basedon dual supply and dual threshold voltages. Acta Physica Sinica, 2011, 60(4): 046602. doi: 10.7498/aps.60.046602
    [8] Kong Yan-Yan, Zhang Shi-Chang. Nonlinear simulation of a coaxial gyro-amplifier with external electrostatic voltage. Acta Physica Sinica, 2011, 60(9): 095201. doi: 10.7498/aps.60.095201
    [9] Liu Yu-Rong, Chen Wei, Liao Rong. Low-operating-voltage polymer thin-film transistors based on poly(3-hexylthiophene). Acta Physica Sinica, 2010, 59(11): 8088-8092. doi: 10.7498/aps.59.8088
    [10] Guo Yan-Jiang, Xiong Yong-Jian. Dynamical properties of quantum ring under the stepped pulse bias. Acta Physica Sinica, 2010, 59(1): 555-559. doi: 10.7498/aps.59.555
    [11] Zhang Zhi-Feng, Zhang He-Ming, Hu Hui-Yong, Xuan Rong-Xi, Song Jian-Jun. Threshold voltage model of strained Si channel nMOSFET. Acta Physica Sinica, 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [12] Tang Xiao-Yan, Zhang Yi-Men, Zhang Yu-Ming. The threshold voltage of SiC Schottky barrier source/drain MOSFET. Acta Physica Sinica, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [13] Li Qi, Zhang Bo, Li Zhao-Ji. A new analytical model of breakdown voltage for the SD LDMOS. Acta Physica Sinica, 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [14] ZHU WEN-ZHANG, SHEN QI-HUA. PHOTOVOLTAGE SPECTROSCOPY STUDY OF GaAs/AIGaAs MULTIPLE QUANTUM WELLS. Acta Physica Sinica, 1996, 45(2): 258-264. doi: 10.7498/aps.45.258
    [15] TIAN MING-LIANG, MAO ZHI-QIANG, ZHANG YU-HENG, SHI JING, MEI XUE-FEI, TIAN DE-CHENG. LOW FREQUENCY VOLTAGE NOISE IN IMPURITY- DOPED BLUE BRONZES. Acta Physica Sinica, 1994, 43(4): 632-636. doi: 10.7498/aps.43.632
    [16] ZHANG YU-HENG, LIU HONG-BAO, CHEN GENG-HUA. THE CURRENT-VOLTAGE HYSTERISIS FOR THE SUPE-RCONDUCTING CROSSED-FILM TUNNELING JUNCTION. Acta Physica Sinica, 1985, 34(4): 429-438. doi: 10.7498/aps.34.429
    [17] ZHANG YU-HENG, WANG JUN. THE RELATIONS BETWEEN VOLTAGE AND MAGNETIC FIELD OF SUPERCONDUCTING WEAKLINK(Ⅰ). Acta Physica Sinica, 1984, 33(7): 952-958. doi: 10.7498/aps.33.952
    [18] ZHANG YU-HENG, WANG JUN. THE RELATIONS BETWEEN VOLTAGE AND MAGNETIC FIELD OF SUPERCONDUCTING WEAKLINK(Ⅱ). Acta Physica Sinica, 1984, 33(7): 959-966. doi: 10.7498/aps.33.959
    [19] JI GUANG-DA, WU HANG-SHENG. A NOTE ON THE THEORY OF MICROWAVE-INDUCED DC VOLTAGE PHENOMENON. Acta Physica Sinica, 1978, 27(1): 118-120. doi: 10.7498/aps.27.118
    [20] Jin Jian-zhong. A SUGGESTION OF USING SOLID INSULATING MATERIAL IN ELECTROSTATIC GENERATOR IN PLACE OF COMPRESSED GASES. Acta Physica Sinica, 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
Metrics
  • Abstract views:  4494
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2022
  • Accepted Date:  06 July 2022
  • Available Online:  22 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回