Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Detection of subsurface defects in silicon carbide bulk materials with photothermal radiometry

Liu Yuan-Feng Li Bin-Cheng Zhao Bin-Xing Liu Hong

Citation:

Detection of subsurface defects in silicon carbide bulk materials with photothermal radiometry

Liu Yuan-Feng, Li Bin-Cheng, Zhao Bin-Xing, Liu Hong
PDF
HTML
Get Citation
  • With excellent physical, mechanical and processing properties, silicon carbide (SiC) has gradually become a preferred lightweight optical material for primary mirrors of large space optical systems. The subsurface defects generated during the preparation and processing procedures of SiC will affect the optical quality of the primary mirrors and the imaging performance of the corresponding optical systems employing the SiC primary mirror as well. In this work, photothermal radiation (PTR), a powerful nondestructive testing technique for detecting sub-surface defects of solid materials, is employed to characterize the subsurface defects of bulk SiC material for primary mirrors.Theoretically, three-dimensional one-layer and three-layer PTR theoretical models are developed to describe the defect-free and defect regions of an SiC bulk material. By analyzing the frequency dependence of PTR phase of the SiC bulk material with different defect depths, an empirical formula for estimating the defect depth via a characteristic frequency (appearing at the minimum of the PTR phase-frequency curve) defined thermal diffusion length is proposed, and simulation results show reasonably good agreement between the estimated and simulated defect depths in a depth range of 0.05–0.50 mm. Experimentally, an SiC bulk sample with a subsurface defect region is tested by the PTR via position scanning and modulation frequency scanning to obtain the position and frequency dependent PTR amplitude and phase. From the spatial distributions of PTR amplitude and phase measured at different frequencies and the phase difference frequency curves of measurement positions in the defect region, the depth and shape of the defect region are estimated and found to be in good agreement with the actual shape of the defect region, which is destructively measured via a depth profiler. The experimental and calculated results demonstrate that the PTR is capable of detecting non-destructively the subsurface defects of SiC bulk material. In addition, for subsurface defects with relatively flat interface, the defect depth can be determined accurately by the developed empirical formula.
      Corresponding author: Li Bin-Cheng, bcli@uestc.edu.cn
    [1]

    Jiang F, Liu Y, Yang Y, Huang Z R, Li D, Liu G L, Liu X J 2012 J. Nano Mater. 2012 7Google Scholar

    [2]

    韩媛媛, 张宇民, 韩杰才, 张剑寒, 姚旺, 周玉峰 2005 材料工程 06 59Google Scholar

    Han Y Y, Zhang Y M, Han J C, Zhang J H, Yao W, Zhou Y F 2005 J. Mater. Eng. 06 59Google Scholar

    [3]

    Sein E, Toulemont Y, Safa F, Duran M, Deny P, Chambure D, Passvogel T, Pilbratt G L 2003 SPIE IR Space Telescopes and Instruments 4850 606Google Scholar

    [4]

    Rodolfo J P 2008 SPIE Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation 7018 70180EGoogle Scholar

    [5]

    Kaneda H, Nakagawa T, Onaka T, Enya K, Kataza H, Makiuti S, Matsuhara H, Miyamoto M, Murakami H, Saruwatari H, Watarai H, Yui Y Y 2007 SPIE Optical Materials and Structures Technologies III 6666 666607Google Scholar

    [6]

    Ebizuka N, Dai Y, Eto H, Lin W, Ebisuzaki T, Omori H, Handa T, Takami H, Takahashi Y 2003 SPIE Specialized Optical Developments in Astronomy 4842 329Google Scholar

    [7]

    周岩 2020 硕士学位论文 (长春: 长春工业大学)

    Zhou Y 2020 M. S. Thesis (Changchun: Changchun University of Technology) (in Chinese)

    [8]

    Goela J S, Pickering M A, Tayler R L 1991 SPIE Optical Surfaces Resistant to Severe Environments 1330 25Google Scholar

    [9]

    Zappellini G B, Martin H M, Miller S M, Smith B K, Cuerden B, Gasho V, Sosa R G, Montoya M, Riccardi A 2007 SPIE Astronomical Adaptive Optics Systems and Applications III 6991 66910UGoogle Scholar

    [10]

    Xie J, Li Q, Sun J X, Li Y H 2015 J. Mater. Process. Tech. 222 422Google Scholar

    [11]

    Yoo H K, Ko J H, Lim K Y, Kwon W T, Kim Y W 2015 Ceram. Int. 41 3490Google Scholar

    [12]

    李改灵, 孙开元, 冯仁余, 刘永军, 常林枫 2008 煤矿机械 12 99Google Scholar

    Li G L, Sun K Y, Feng R Y, Liu Y J, Chang L F 2008 Coal Mine Machinery 12 99Google Scholar

    [13]

    Neauport J, Ambard C, Cormont P, Darbois N, Destribats J, Luitot C, Rondeau O 2009 Opt. Express 17 20448Google Scholar

    [14]

    Fahnle O W, Wons T, Koch E, Debruyne S, Meeder M, Booij S M, Braat J J M 2002 Applied Optics 41 4036Google Scholar

    [15]

    Wuttig A, Steinert J, Duparre A, Truckenbrodt H 1999 SPIE Optical Fabrication and Testing 3739 369Google Scholar

    [16]

    刘红婕, 王凤蕊, 耿峰, 周晓燕, 黄进, 叶鑫, 蒋晓东, 吴卫东, 杨李茗 2020 光学精密工程 28 50Google Scholar

    Liu H J, Wang F R, Geng F, Zhou X Y, Huang J, Ye X, Jiang X D, Wu W D, Yang L M 2020 Optics Precis. Eng. 28 50Google Scholar

    [17]

    Nordal P E, Kanstad S O 1979 Phys. Scr. 20 659Google Scholar

    [18]

    Nakamura H, Tsubouchi K, Mikoshiba N 1985 Jpn. J. Appl. Phys. 24 222Google Scholar

    [19]

    李佩赞 1989 红外技术 11 97

    Li P Z 1989 Infrared Technology 11 97

    [20]

    范春利, 孙丰瑞, 杨立 2005 激光与红外 35 504Google Scholar

    Fan C L, Sun F R, Yang L 2005 Laser & Infrared 35 504Google Scholar

    [21]

    王心觉, 刘恒彪, 胡文祥 2017 激光与光电子学进展 54 101201

    [22]

    曹丹, 屈惠明 2013 激光与红外 43 513

    Cao D, Qu H M 2013 Laser & Infrared 43 513

    [23]

    Muramatsu M, Nakasumi S, Harada Y 2016 Adv. Compos. Mater. 25 541Google Scholar

    [24]

    马晓波, 王青青 2018 红外技术 40 85

    Ma X B, Wang Q Q 2018 Infrared Technology 40 85

    [25]

    尹国应, 李爱珠 2020 光学与光电技术 18 18

    Yin G Y, Li A Z 2020 Optics & Optoelectronic Technology 18 18

    [26]

    李佩赞, 王钦华 1994 仪器仪表学报 15 265Google Scholar

    Li P Z, Wang Q H 1994 Chin. J. Sci. Instrum. 15 265Google Scholar

    [27]

    管国兴, 郑小明, 李佩赞 1988 红外研究 7A 201

    Guan G X, Zheng X M, Li P Z 1988 Chin. J. Infrared Res. 7A 201

    [28]

    李佩赞, 王钦华 1996 物理 25 426

    Li P Z, Wang Q H 1996 Physics 25 426

    [29]

    江海军, 陈力, 张淑仪 2014 无损检测 36 20

    Jiang H J, Chen L, Zhang S Y 2014 Nondestructive Testing 36 20

    [30]

    江海军, 陈力, 苏清风, 邢建湘 2018 无损检测 40 15Google Scholar

    Jiang H J, Chen L, Su Q F, Xing J X 2018 Nondestructive Testing 40 15Google Scholar

    [31]

    江海军, 陈力 2018 红外技术 40 946Google Scholar

    Jiang H J, Chen L 2018 Infrared Technology 40 946Google Scholar

  • 图 1  PTR理论模型 (a) 单层模型; (b) 三层模型

    Figure 1.  Configuration of PTR theoretical model: (a) One-layer model; (b) three-layer model.

    图 2  不同缺陷深度下的PTR相位差-频率曲线

    Figure 2.  Phase difference-frequency curve of PTR signal in different defect depths.

    图 3  缺陷深度计算结果 (a) 计算值与实际值比较; (b) 相对误差随深度的变化

    Figure 3.  Calculation results of depth of defect: (a) Comparison between calculated value and actual value; (b) relative error of different depths.

    图 4  PTR实验装置

    Figure 4.  PTR experimental setup.

    图 5  SiC样品示意图 (a) 光学图像; (b) 线扫描红外辐射图像[29-31]

    Figure 5.  SiC sample under test: (a) Optical image; (b) line-scanned infrared emission image showing subsurface defect marked with a red circle[29-31].

    图 6  样品无缺陷区域PTR信号的实验结果及其最佳拟合曲线 (a) 幅度; (b)相位

    Figure 6.  Experimental frequency dependence of PTR signal and corresponding best-fit for the defect-free region of the SiC sample: (a) Amplitude; (b) phase.

    图 7  SiC样品不同频率(5, 37, 245和960 Hz)时缺陷区域PTR信号的二维分布 (a) 幅度比; (b) 相位差

    Figure 7.  Two-dimensional spatial distributions of PTR signals measured at different modulation frequencies (5, 37, 245, and 960 Hz, respectively) for the defect region of the SiC sample: (a) Amplitude ratio; (b) phase difference.

    图 8  (a) 实际的缺陷深度分布; (b) 部分测量点的PTR信号相位差-频率曲线

    Figure 8.  (a) Actual depth distribution of the defect region; (b) phase difference frequency curves of PTR signals at some measuring points.

    表 1  测量点的缺陷深度估算结果

    Table 1.  Estimated results of defect depth at measuring points.

    坐标缺陷深度/μm误差
    实际值测量值绝对误差/μm相对误差/%
    1(21.0, 19.0)371.6392.020.45.5
    2(20.5, 19.5)392.0392.000
    3(20.2, 20.0)291.0276.015.05.2
    4(20.0, 20.4)186.9164.022.912.3
    5(21.3, 17.2)80.958.521.727.7
    6(21.0, 18.1)284.0392.0108.038.1
    7(20.6, 19.1)413.9560.0146.035.5
    8(19.8, 20.8)118.058.559.550.4
    DownLoad: CSV
  • [1]

    Jiang F, Liu Y, Yang Y, Huang Z R, Li D, Liu G L, Liu X J 2012 J. Nano Mater. 2012 7Google Scholar

    [2]

    韩媛媛, 张宇民, 韩杰才, 张剑寒, 姚旺, 周玉峰 2005 材料工程 06 59Google Scholar

    Han Y Y, Zhang Y M, Han J C, Zhang J H, Yao W, Zhou Y F 2005 J. Mater. Eng. 06 59Google Scholar

    [3]

    Sein E, Toulemont Y, Safa F, Duran M, Deny P, Chambure D, Passvogel T, Pilbratt G L 2003 SPIE IR Space Telescopes and Instruments 4850 606Google Scholar

    [4]

    Rodolfo J P 2008 SPIE Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation 7018 70180EGoogle Scholar

    [5]

    Kaneda H, Nakagawa T, Onaka T, Enya K, Kataza H, Makiuti S, Matsuhara H, Miyamoto M, Murakami H, Saruwatari H, Watarai H, Yui Y Y 2007 SPIE Optical Materials and Structures Technologies III 6666 666607Google Scholar

    [6]

    Ebizuka N, Dai Y, Eto H, Lin W, Ebisuzaki T, Omori H, Handa T, Takami H, Takahashi Y 2003 SPIE Specialized Optical Developments in Astronomy 4842 329Google Scholar

    [7]

    周岩 2020 硕士学位论文 (长春: 长春工业大学)

    Zhou Y 2020 M. S. Thesis (Changchun: Changchun University of Technology) (in Chinese)

    [8]

    Goela J S, Pickering M A, Tayler R L 1991 SPIE Optical Surfaces Resistant to Severe Environments 1330 25Google Scholar

    [9]

    Zappellini G B, Martin H M, Miller S M, Smith B K, Cuerden B, Gasho V, Sosa R G, Montoya M, Riccardi A 2007 SPIE Astronomical Adaptive Optics Systems and Applications III 6991 66910UGoogle Scholar

    [10]

    Xie J, Li Q, Sun J X, Li Y H 2015 J. Mater. Process. Tech. 222 422Google Scholar

    [11]

    Yoo H K, Ko J H, Lim K Y, Kwon W T, Kim Y W 2015 Ceram. Int. 41 3490Google Scholar

    [12]

    李改灵, 孙开元, 冯仁余, 刘永军, 常林枫 2008 煤矿机械 12 99Google Scholar

    Li G L, Sun K Y, Feng R Y, Liu Y J, Chang L F 2008 Coal Mine Machinery 12 99Google Scholar

    [13]

    Neauport J, Ambard C, Cormont P, Darbois N, Destribats J, Luitot C, Rondeau O 2009 Opt. Express 17 20448Google Scholar

    [14]

    Fahnle O W, Wons T, Koch E, Debruyne S, Meeder M, Booij S M, Braat J J M 2002 Applied Optics 41 4036Google Scholar

    [15]

    Wuttig A, Steinert J, Duparre A, Truckenbrodt H 1999 SPIE Optical Fabrication and Testing 3739 369Google Scholar

    [16]

    刘红婕, 王凤蕊, 耿峰, 周晓燕, 黄进, 叶鑫, 蒋晓东, 吴卫东, 杨李茗 2020 光学精密工程 28 50Google Scholar

    Liu H J, Wang F R, Geng F, Zhou X Y, Huang J, Ye X, Jiang X D, Wu W D, Yang L M 2020 Optics Precis. Eng. 28 50Google Scholar

    [17]

    Nordal P E, Kanstad S O 1979 Phys. Scr. 20 659Google Scholar

    [18]

    Nakamura H, Tsubouchi K, Mikoshiba N 1985 Jpn. J. Appl. Phys. 24 222Google Scholar

    [19]

    李佩赞 1989 红外技术 11 97

    Li P Z 1989 Infrared Technology 11 97

    [20]

    范春利, 孙丰瑞, 杨立 2005 激光与红外 35 504Google Scholar

    Fan C L, Sun F R, Yang L 2005 Laser & Infrared 35 504Google Scholar

    [21]

    王心觉, 刘恒彪, 胡文祥 2017 激光与光电子学进展 54 101201

    [22]

    曹丹, 屈惠明 2013 激光与红外 43 513

    Cao D, Qu H M 2013 Laser & Infrared 43 513

    [23]

    Muramatsu M, Nakasumi S, Harada Y 2016 Adv. Compos. Mater. 25 541Google Scholar

    [24]

    马晓波, 王青青 2018 红外技术 40 85

    Ma X B, Wang Q Q 2018 Infrared Technology 40 85

    [25]

    尹国应, 李爱珠 2020 光学与光电技术 18 18

    Yin G Y, Li A Z 2020 Optics & Optoelectronic Technology 18 18

    [26]

    李佩赞, 王钦华 1994 仪器仪表学报 15 265Google Scholar

    Li P Z, Wang Q H 1994 Chin. J. Sci. Instrum. 15 265Google Scholar

    [27]

    管国兴, 郑小明, 李佩赞 1988 红外研究 7A 201

    Guan G X, Zheng X M, Li P Z 1988 Chin. J. Infrared Res. 7A 201

    [28]

    李佩赞, 王钦华 1996 物理 25 426

    Li P Z, Wang Q H 1996 Physics 25 426

    [29]

    江海军, 陈力, 张淑仪 2014 无损检测 36 20

    Jiang H J, Chen L, Zhang S Y 2014 Nondestructive Testing 36 20

    [30]

    江海军, 陈力, 苏清风, 邢建湘 2018 无损检测 40 15Google Scholar

    Jiang H J, Chen L, Su Q F, Xing J X 2018 Nondestructive Testing 40 15Google Scholar

    [31]

    江海军, 陈力 2018 红外技术 40 946Google Scholar

    Jiang H J, Chen L 2018 Infrared Technology 40 946Google Scholar

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [3] Yu Zi-Heng, Ma Chun-Hong, Bai Shao-Xian. Effect of sharp edge of ring-groove-structures in SiC surface. Acta Physica Sinica, 2021, 70(4): 044702. doi: 10.7498/aps.70.20201303
    [4] Huang Yi-Hua, Jiang Dong-Liang, Zhang Hui, Chen Zhong-Ming, Huang Zheng-Ren. Ferromagnetism of Al-doped 6H-SiC and theoretical calculation. Acta Physica Sinica, 2017, 66(1): 017501. doi: 10.7498/aps.66.017501
    [5] Lu Wu-Yue, Zhang Yong-Ping, Chen Zhi-Zhan, Cheng Yue, Tan Jia-Hui, Shi Wang-Zhou. Effect of different annealing treatment methods on the Ni/SiC contact interface properties. Acta Physica Sinica, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [6] Yang Shuai, Tang Xiao-Yan, Zhang Yu-Ming, Song Qing-Wen, Zhang Yi-Men. Influence of charge imbalance on breakdown voltage of 4H-SiC semi-superjunction VDMOSFET. Acta Physica Sinica, 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [7] Cai Yue-Fei, Lü Zhi-Wei, Li Sen-Sen, Wang Yu-Lei, Zhu Cheng-Yu, Lin Dian-Yang, He Wei-Ming. Systematic studies on the field enhancement effect of Hertzian microcracks. Acta Physica Sinica, 2013, 62(23): 234203. doi: 10.7498/aps.62.234203
    [8] Song Kun, Chai Chang-Chun, Yang Yin-Tang, Zhang Xian-Jun, Chen Bin. Improvement in breakdown characteristics of 4H-SiC MESFET with a gate-drain surface epi-layer and optimization of the structure. Acta Physica Sinica, 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [9] Zhao Cheng-Li, Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [10] Zhang Yong, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Yang Yi-Tao. Study on nanohardness of helium-implanted 4H-SiC. Acta Physica Sinica, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [11] Zhang Yun, Shao Xiao-Hong, Wang Zhi-Qiang. A first principle study on p-type doped 3C-SiC. Acta Physica Sinica, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [12] Liu Fu, Zhou Ji-Cheng, Tan Xiao-Chao. First-principles study on 3C-SiC(001)-(2×1)surface atomic structure and electronic structure. Acta Physica Sinica, 2009, 58(11): 7821-7825. doi: 10.7498/aps.58.7821
    [13] Huang Wei, Chen Zhi-Zhan, Chen Bo-Yuan, Zhang Jing-Yu, Yan Cheng-Feng, Xiao Bing, Shi Er-Wei. Effect of hydrofluoric acid etching time on Ni/6H-SiC contacts. Acta Physica Sinica, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [14] Wu Yu-Yu, Chen Shi, Gao Xin-Yu, Andrew Thye Shen Wee, Xu Peng-Shou. Synchrotron radiation angle-resolved photoelectron spectroscopy studies of 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)] R30° surface. Acta Physica Sinica, 2009, 58(6): 4288-4294. doi: 10.7498/aps.58.4288
    [15] Ma Ge-Lin, Zhang Yu-Ming, Zhang Yi-Men, Ma Zhong-Fa. The study of optimal fitting parameter for C 1s spectra of SiC surface. Acta Physica Sinica, 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [16] Ma Ge-Lin, Zhang Yu-Ming, Zhang Yi-Men, Ma Zhong-Fa. Study on the chemical states of the surface of SiC epilayer. Acta Physica Sinica, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [17] Gao Jin-Xia, Zhang Yi-Men, Tang Xiao-Yan, Zhang Yu-Ming. Extraction of channel carrier concentration using C-V method for SiC buried-channel MOSFET. Acta Physica Sinica, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [18] Xu Peng-Shou, Li Yong-Hua, Pan Hai-Bin. First principle study on β-SiC(001)-(2×1) surface structure. Acta Physica Sinica, 2005, 54(12): 5824-5829. doi: 10.7498/aps.54.5824
    [19] Shang Ye-Chun, Liu Zhong-Li, Wang Shu-Rui. Study on the reverse characteristics of Ti/6H-SiC Schottky contacts. Acta Physica Sinica, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
    [20] Jiang Zhen-Yi, Xu Xiao-Hong, Wu Hai-Shun, Zhang Fu-Qiang, Jin Zhi-Hao. . Acta Physica Sinica, 2002, 51(7): 1586-1590. doi: 10.7498/aps.51.1586
Metrics
  • Abstract views:  4077
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  01 July 2022
  • Accepted Date:  26 October 2022
  • Available Online:  11 November 2022
  • Published Online:  20 January 2023

/

返回文章
返回