Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Giant and tunable Rashba spin splitting and quantum spin Hall effect in H-Pb-Cl

Xue Wen-Ming Li Jin He Chao-Yu Ouyang Tao Luo Chao-Bo Tang Chao Zhong Jian-Xin

Citation:

Giant and tunable Rashba spin splitting and quantum spin Hall effect in H-Pb-Cl

Xue Wen-Ming, Li Jin, He Chao-Yu, Ouyang Tao, Luo Chao-Bo, Tang Chao, Zhong Jian-Xin
PDF
HTML
Get Citation
  • Rashba spin splitting and quantum spin Hall effect have attracted enormous interest due to their great significance in the application of spintronics. According to the first-principles calculation, we propose a two-dimensional hexagonal lattice material H-Pb-Cl, which realizes the coexistence of giant Rashba spin splitting and quantum spin Hall effect. Owing to the break of space inversion symmetry and the existence of intrinsic electric field, H-Pb-Cl has a huge Rashba spin splitting phenomenon (αR = 3.78 eV·Å), and the Rashba spin splitting of H-Pb-Cl(–16%—16%) can be adjusted by changing the biaxial stress. By analyzing the electronic properties of H-Pb-Cl, we find that H-Pb-Cl has a huge band gap near the Fermi surface (1.31 eV), and the topological invariant Z2 = 1 of the system is caused by the inversion of s-p orbit, which indicates that H-Pb-Cl is a two-dimensional topological insulator with a huge topological band gap, and the gap is large enough to observe the topological edge states at room temperature. In addition, we further consider the effect of BN and graphane substrates on the topological band gap of H-Pb-Cl by using the H-Pb-Cl (111)-(1×1) /BN (111)-(2×2) and H-Pb-Cl(1×1)/ graphane (2×2) system, and find that the lattice mismatch between H-Pb-Cl (5.395 Å) and BN (2.615 Å) and between H-Pb-Cl (5.395 Å) and graphane (2.575 Å) are about 3% and 4.5%, respectively. According to our calculation results, H-Pb-Cl still retains the properties of topological insulator under the effect of spin orbit coupling, and is not affected by BN nor graphane. Our results show that the nontrivial topological band gap of H-Pb-Cl can be well preserved under both biaxial stress effect and substrate effect. In addition, H-Pb-Cl can well retain the nontrivial topological band gap under the stress of –16%–16%, and thus there are many kinds of substrate materials used to synthesize this material, which is very helpful in successfully realizing preparation experimentally. Our research provides a promising candidate material for exploring and realizing the coexistence of Rashba spin splitting and quantum spin Hall effect. And the coexistence of giant Rashba spin splitting and quantum spin Hall effect greatly broadens the scope of potential applications of H-Pb-Cl in the field of spintronic devices.
      Corresponding author: Xue Wen-Ming, xuewm@hnie.edu.cn ; Li Jin, lijin@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874316, 11404275, 11474244) and the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ3118).
    [1]

    Moore J E 2010 Nature 464 194Google Scholar

    [2]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar

    [3]

    Feng Y, Jiang Q, Feng B J, Yang M, Xu T, Liu W J, Yang X F, Arita M, Schwier E F, Shimada K, Jeschke H O, Thomale R, Shi Y G, Wu X X, Xiao S Z, Qiao S, He S L 2019 Nat. Commun. 10 4765Google Scholar

    [4]

    Lu J P, Yau J B, Shukla S P, Shayegan M 1998 Phys. Rev. Lett. 81 1282Google Scholar

    [5]

    Kuhlen S, Schmalbuch K, Hagedorn M, Schlammes P, Patt M, Lepsa M, Guntherodt G, Beschoten B 2012 Phys. Rev. Lett. 109 146603Google Scholar

    [6]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [7]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [8]

    Lu Y H, Wang B Z, Liu X J 2020 Sci. Bull. 65 2080Google Scholar

    [9]

    Zezyulin D A, Konotop V V 2022 Phys. Rev. A 105 063323Google Scholar

    [10]

    Xu Z C, Zhou Z, Cheng E H, Lang L J, Zhu S L 2022 Sci. Chin. Phys. Mech. Astron. 65 283011Google Scholar

    [11]

    Zhao Q 2022 Mod. Phys. Lett. B 36 2250070

    [12]

    Liu H, Zhang T, Wang K, Gao F, Xu G, Zhang X, Li S X, Cao G, Wang T, Zhang J, Hu X, Li H O, Guo G P 2022 Phys. Rev. Appl. 17 044052Google Scholar

    [13]

    Smith L W, Chen H B, Chang C W, Wu C W, Lo S T, Chao S H, Farrer I, Beere H E, Griffiths J P, Jones G A C, Ritchie D A, Chen Y N, Chen T M 2022 Phys. Rev. Lett. 128 027701Google Scholar

    [14]

    Dai X Y, Liu B Y 2022 Phys. Rev. A 105 043313Google Scholar

    [15]

    Hai K, Wang Y F, Chen Q, Hai W H 2021 Sci. Rep. 11 18839Google Scholar

    [16]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [17]

    红兰, 戈君, 双山, 刘达权 2022 物理学报 71 016301Google Scholar

    Hong L, Ge J, Shuang S, Liu D Q 2022 Acta. Phys. Sin. 71 016301Google Scholar

    [18]

    Li Y, Ma X K, Zhai X K, Gao M N, Dai H T, Schumacher S, Gao T G 2022 Nat. Commun. 13 3785Google Scholar

    [19]

    Ghosh D, Roy K, Maitra S, Kumar P 2022 J. Phys. Chem. Lett. 13 5

    [20]

    Schlipf M, Giustino F 2021 Phys. Rev. Lett. 127 237601Google Scholar

    [21]

    Zhu L, Zhang T, Chen G, Chen H 2018 Phys. Chem. Chem. Phys. 20 30133Google Scholar

    [22]

    Awschalom D, Samarth N 2009 Physics 2 50Google Scholar

    [23]

    Henk J, Hoesch M, Osterwalder J, Ernst A, Bruno P 2004 J. Phys. Condens. Matter 16 43

    [24]

    Gong S J, Cai J, Yao Q F, Tong W Y, Wan X, Duan C G, Chu J H 2016 J. Appl. Phys. 119 125310Google Scholar

    [25]

    Krupin O, Bihlmayer G, Starke K, Gorovikov S, Prieto J E, Dobrich K, Blügel S, Kaindl G R 2005 Phys. Rev. B 71 201403Google Scholar

    [26]

    Koroteev Y M, Bihlmayer G, Gayone J E, Chulkov E V, Blugel S, Echenique P M, Hofmann 2004 Phys. Rev. Lett. 93 046403Google Scholar

    [27]

    Vajna S, Simon E, Szilva A, Palotas K, Ujfalussy B, Szunyogh L 2012 Phys. Rev. B 85 075404

    [28]

    Meier F, Dil H, Lobo-Checa J, Patthey L, Osterwalder J 2008 Phys. Rev. B 77 089902Google Scholar

    [29]

    Ast C R, Henk J, Ernst A, Moreschini L, Falub M C, Pacile D, Bruno P, Kern K, Grioni M 2007 Phys. Rev. Lett. 98 186807Google Scholar

    [30]

    Popović D, Reinert F, Hüfner S, Grigoryan V G, Springborg M, Cercellier H, Fagot-Revurat Y, Kierren B, Malterre D 2005 Phys. Rev. B 72 045419Google Scholar

    [31]

    Cercellier H, Didiot C, Fagot-Revurat Y, Kierren B, Moreau L, Malterre D, Reinert F 2006 Phys. Rev. B 73 195413Google Scholar

    [32]

    龚士静, 段纯刚 2015 物理学报 64 187103Google Scholar

    Gong S J, Duan C G, 2015 Acta. Phys. Sin. 64 187103Google Scholar

    [33]

    Peng Q, Lei Y, Deng X, Deng J, Wu G, Li J, He C, Zhong J 2022 Physica E 135 114944Google Scholar

    [34]

    Sakano M, Bahramy M S, Katayama A, Shimojima T, Murakawa H, Kaneko Y, Malaeb W, Shin S, Ono K, Kumigashira H, Arita R, Nagaosa N, Hwang H Y, Tokura Y, Ishizaka K 2013 Phys. Rev. Lett. 110 107204Google Scholar

    [35]

    Bahramy M S, Arita R, Nagaosa N 2011 Phys. Rev. B 84 041202

    [36]

    Narayan A 2015 Phys. Rev. B 92 220101Google Scholar

    [37]

    Xiang F X, Wang X L, Veldhorst M, Dou S X, Fuhrer M S 2015 Phys. Rev. B 92 035123Google Scholar

    [38]

    Krempaský J, Volfova H, Muff S, Pilet N, Landolt G, Radovic M, Shi M, Kriegner D, Holy V, Braun J, Ebert H, Bisti F, Rogalev V A, Strocov V N, Springholz G, Minar J, Dil J H 2016 Phys. Rev. B 94 205111Google Scholar

    [39]

    Di Sante D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509Google Scholar

    [40]

    Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, Nagaosa N, Kobayashi K, Murakami Y, Kumai R, Kaneko Y, Onose Y, Tokura Y 2011 Nat. Mater. 10 521Google Scholar

    [41]

    Krempaský J, Muff S, Min´ar J, Pilet N, Fanciulli M, Weber A P, Guedes E B, Caputo M, Müller E, Volobuev V V, Gmitra M, Vaz C A F, Scagnoli V, Springholz G, Dil J H 2018 Phys. Rev. X 8 021067

    [42]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [43]

    Knez I, Du R R, Sullivan G 2012 Phys. Rev. Lett. 109 186603Google Scholar

    [44]

    Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Ye H, Han J F, Wei Z Y 2022 Appl. Phys. Lett. 120 053108Google Scholar

    [45]

    Yang M, Liu Y D, Zhou W, Liu C, Mu D, Liu Y N, Wang J O, Hao W C, Li J, Zhong J X, Du Y, Zhuang J C 2022 ACS Nano 16 2

    [46]

    Ezawa M 2012 New J. Phys. 14 033003Google Scholar

    [47]

    Zhang R W, Ji W X, Zhang C W, Li S S, Li P, Wang P J 2016 J. Mater. Chem. C 4 2088Google Scholar

    [48]

    Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W, Zhang S C 2013 Phys. Rev. Lett. 111 136804Google Scholar

    [49]

    Zhao H, Zhang C W, Ji W X, Zhang R W, Li S S, Yan S S, Zhang B M, Li P, Wang P J 2016 Sci. Rep. 6 20152Google Scholar

    [50]

    Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B, Frauenheim T 2015 Nano Lett. 15 7867Google Scholar

    [51]

    Weng H, Dai X, Fang Z 2014 Phys. Rev. X 4 011002

    [52]

    Li X, Ying D, Ma Y, Wei W, Lin Y, Huang B 2015 Nano Res. 8 2954Google Scholar

    [53]

    Luo W, Xiang H 2015 Nano Lett. 15 3230Google Scholar

    [54]

    Jiang J W, Guo X Q, Ma Z, Wang G, Xu Y G, Zhang X W 2022 J. Mater. Chem. C 10 11329Google Scholar

    [55]

    Guo Z P, Yan D Y, Sheng H H, Nie S M, Shi Y G, Wang Z J 2021 Phys. Rev. B 103 115145Google Scholar

    [56]

    Wang X, Wan W H, Ge Y F, Zhang K C, Liu Y 2022 Physica E 143 115325Google Scholar

    [57]

    Perez M N R, Villaos R A B, Feng L Y, Maghirang A B, Cheng C P, Huang Z Q, Hsu C H, Bansil A, Chuang F C 2022 Appl. Phys. Rev. 9 011410Google Scholar

    [58]

    Li J, He C Y, Xiao H P, Tang C, Wei X L, Kim J, Kioussis N, Stocks M, Zhong J X 2015 Sci. Rep. 5 14115Google Scholar

    [59]

    Yuhara J, He B, Matsunami N, Nakatake M, Le Lay G 2019 Adv. Mater. 31 e1901017Google Scholar

    [60]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [61]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 77 3865

    [62]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685Google Scholar

    [63]

    Wu Q S, Zhang S N, Song H F, Troyer M, Soluyanov A A 2018 Comput. Phys. Commun. 224 405Google Scholar

    [64]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [65]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [66]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [67]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [68]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, W. Molenkamp L, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [69]

    Liu Q, Guo Y, Freeman A 2013 Nano Lett. 13 5264Google Scholar

    [70]

    Gong Q, Zhang G L 2022 Int. J. Mol. Sci. 23 7629Google Scholar

    [71]

    Sino P A L, Feng L Y, Villaos R A B, Cruzado N H, Huang Z Q, Hsu C H, Chuang F C 2021 Nanoscale Adv. 3 6608Google Scholar

    [72]

    Hussain G, Samad A, Ur Rehman M, Guono G, Autieri C 2022 J. Magn. Magn. Mater. 563 169897Google Scholar

    [73]

    Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Lu D L, Zhong J X 2020 J. Phys. D: Appl. Phys 53 025302Google Scholar

    [74]

    Patel S, Dey U, Adhikari N P, Taraphder A 2022 Phys. Rev. B 106 035125Google Scholar

    [75]

    Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Liu H T, Zhong J X 2019 J. Phys. Condens. Matter 31 365002Google Scholar

    [76]

    Lee K, Yun W S, Lee J D 2015 Phys. Rev. B 91 125420Google Scholar

    [77]

    LaShell S, McDougall B, Jensen E 1996 Phys. Rev. Lett. 77 3419Google Scholar

  • 图 1  (a) 2D层状材料H-Pb-Cl结构的侧视图和俯视图; (b) H-Pb-Cl结构在布里渊区沿高对称点的声子谱

    Figure 1.  (a) Side and top view of the crystal structure H-Pb-Cl; (b) phonon dispersion of 2D H-Pb-Cl along the high symmetry points in Brillouin zone.

    图 2  采用PBE和HSE06的2D H-Pb-Cl的能带结构 (a), (c) 不考虑SOC; (b), (d)考虑SOC. 蓝点、红点和绿点分别表示Pb原子的s, px, y和pz轨道的投影权重. 图(b)中的插图表示的是费米面附近的能带劈裂现象

    Figure 2.  The band structure of 2D H-Pb-Cl using PBE and HSE06: (a), (c) Without SOC; (b), (d) with SOC. Blue, red and green dots represent the contribution of s, px, y, pz orbitals of Pb atoms, respectively. The illustration in Figure (b) shows the band splitting near the Fermi surface.

    图 3  (a) 沿着ky方向的瓦尼尔中心演化, 得到Z2 = 1; (b) H-Pb-Cl沿着锯齿形边缘的边缘态; (c) H-Pb-Cl在Γ点的能级演化

    Figure 3.  (a) The evolutions of Wannier centers along ky, yielding Z2 = 1; (b) edge states of H-Pb-Cl on the zigzag edges; (c) evolution of energy bands at Γ for H-Pb-Cl.

    图 4  (a) 无双轴应力作用下H-Pb-Cl的功函数, ∆Φ表示的是静电势差; (b) H-Pb-Cl的静电势差在双轴应力从–16% 到16%作用下的变化图

    Figure 4.  (a) Work functions of H-Pb-Cl under 0 biaxial stress, where ∆Φ represents the electrostatic potential difference under different biaxial stresses; (b) the variations of electrostatic potential difference ∆Φ of H-Pb-Cl with the biaxial stress of –16% to 16%.

    图 5  (a) 在双轴应力(–16%到16%)作用下H-Pb-Cl体系内的Rashba自旋劈裂系数αR的变化图; (b) H-Pb-Cl (1×1)/BN (2×2)的能带结构, 其中红色部分代表的是基底BN在能带中的贡献情况; (c) H-Pb-Cl (1×1)/石墨烷 (2×2), 其中紫色点线代表的是石墨烷在能带中的贡献情况

    Figure 5.  (a) The variations of Rashba spin splitting αR of H-Pb-Cl with the biaxial stress of –16% to 16%; (b) band structure of H-Pb-Cl (1×1)/BN (2×2), with the red stars-lines contributed by BN substrate; (c) band structure of H-Pb-Cl (1×1)/graphane (2×2), with the purple dotted line contributed by graphane substrate.

  • [1]

    Moore J E 2010 Nature 464 194Google Scholar

    [2]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar

    [3]

    Feng Y, Jiang Q, Feng B J, Yang M, Xu T, Liu W J, Yang X F, Arita M, Schwier E F, Shimada K, Jeschke H O, Thomale R, Shi Y G, Wu X X, Xiao S Z, Qiao S, He S L 2019 Nat. Commun. 10 4765Google Scholar

    [4]

    Lu J P, Yau J B, Shukla S P, Shayegan M 1998 Phys. Rev. Lett. 81 1282Google Scholar

    [5]

    Kuhlen S, Schmalbuch K, Hagedorn M, Schlammes P, Patt M, Lepsa M, Guntherodt G, Beschoten B 2012 Phys. Rev. Lett. 109 146603Google Scholar

    [6]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [7]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [8]

    Lu Y H, Wang B Z, Liu X J 2020 Sci. Bull. 65 2080Google Scholar

    [9]

    Zezyulin D A, Konotop V V 2022 Phys. Rev. A 105 063323Google Scholar

    [10]

    Xu Z C, Zhou Z, Cheng E H, Lang L J, Zhu S L 2022 Sci. Chin. Phys. Mech. Astron. 65 283011Google Scholar

    [11]

    Zhao Q 2022 Mod. Phys. Lett. B 36 2250070

    [12]

    Liu H, Zhang T, Wang K, Gao F, Xu G, Zhang X, Li S X, Cao G, Wang T, Zhang J, Hu X, Li H O, Guo G P 2022 Phys. Rev. Appl. 17 044052Google Scholar

    [13]

    Smith L W, Chen H B, Chang C W, Wu C W, Lo S T, Chao S H, Farrer I, Beere H E, Griffiths J P, Jones G A C, Ritchie D A, Chen Y N, Chen T M 2022 Phys. Rev. Lett. 128 027701Google Scholar

    [14]

    Dai X Y, Liu B Y 2022 Phys. Rev. A 105 043313Google Scholar

    [15]

    Hai K, Wang Y F, Chen Q, Hai W H 2021 Sci. Rep. 11 18839Google Scholar

    [16]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [17]

    红兰, 戈君, 双山, 刘达权 2022 物理学报 71 016301Google Scholar

    Hong L, Ge J, Shuang S, Liu D Q 2022 Acta. Phys. Sin. 71 016301Google Scholar

    [18]

    Li Y, Ma X K, Zhai X K, Gao M N, Dai H T, Schumacher S, Gao T G 2022 Nat. Commun. 13 3785Google Scholar

    [19]

    Ghosh D, Roy K, Maitra S, Kumar P 2022 J. Phys. Chem. Lett. 13 5

    [20]

    Schlipf M, Giustino F 2021 Phys. Rev. Lett. 127 237601Google Scholar

    [21]

    Zhu L, Zhang T, Chen G, Chen H 2018 Phys. Chem. Chem. Phys. 20 30133Google Scholar

    [22]

    Awschalom D, Samarth N 2009 Physics 2 50Google Scholar

    [23]

    Henk J, Hoesch M, Osterwalder J, Ernst A, Bruno P 2004 J. Phys. Condens. Matter 16 43

    [24]

    Gong S J, Cai J, Yao Q F, Tong W Y, Wan X, Duan C G, Chu J H 2016 J. Appl. Phys. 119 125310Google Scholar

    [25]

    Krupin O, Bihlmayer G, Starke K, Gorovikov S, Prieto J E, Dobrich K, Blügel S, Kaindl G R 2005 Phys. Rev. B 71 201403Google Scholar

    [26]

    Koroteev Y M, Bihlmayer G, Gayone J E, Chulkov E V, Blugel S, Echenique P M, Hofmann 2004 Phys. Rev. Lett. 93 046403Google Scholar

    [27]

    Vajna S, Simon E, Szilva A, Palotas K, Ujfalussy B, Szunyogh L 2012 Phys. Rev. B 85 075404

    [28]

    Meier F, Dil H, Lobo-Checa J, Patthey L, Osterwalder J 2008 Phys. Rev. B 77 089902Google Scholar

    [29]

    Ast C R, Henk J, Ernst A, Moreschini L, Falub M C, Pacile D, Bruno P, Kern K, Grioni M 2007 Phys. Rev. Lett. 98 186807Google Scholar

    [30]

    Popović D, Reinert F, Hüfner S, Grigoryan V G, Springborg M, Cercellier H, Fagot-Revurat Y, Kierren B, Malterre D 2005 Phys. Rev. B 72 045419Google Scholar

    [31]

    Cercellier H, Didiot C, Fagot-Revurat Y, Kierren B, Moreau L, Malterre D, Reinert F 2006 Phys. Rev. B 73 195413Google Scholar

    [32]

    龚士静, 段纯刚 2015 物理学报 64 187103Google Scholar

    Gong S J, Duan C G, 2015 Acta. Phys. Sin. 64 187103Google Scholar

    [33]

    Peng Q, Lei Y, Deng X, Deng J, Wu G, Li J, He C, Zhong J 2022 Physica E 135 114944Google Scholar

    [34]

    Sakano M, Bahramy M S, Katayama A, Shimojima T, Murakawa H, Kaneko Y, Malaeb W, Shin S, Ono K, Kumigashira H, Arita R, Nagaosa N, Hwang H Y, Tokura Y, Ishizaka K 2013 Phys. Rev. Lett. 110 107204Google Scholar

    [35]

    Bahramy M S, Arita R, Nagaosa N 2011 Phys. Rev. B 84 041202

    [36]

    Narayan A 2015 Phys. Rev. B 92 220101Google Scholar

    [37]

    Xiang F X, Wang X L, Veldhorst M, Dou S X, Fuhrer M S 2015 Phys. Rev. B 92 035123Google Scholar

    [38]

    Krempaský J, Volfova H, Muff S, Pilet N, Landolt G, Radovic M, Shi M, Kriegner D, Holy V, Braun J, Ebert H, Bisti F, Rogalev V A, Strocov V N, Springholz G, Minar J, Dil J H 2016 Phys. Rev. B 94 205111Google Scholar

    [39]

    Di Sante D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509Google Scholar

    [40]

    Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, Nagaosa N, Kobayashi K, Murakami Y, Kumai R, Kaneko Y, Onose Y, Tokura Y 2011 Nat. Mater. 10 521Google Scholar

    [41]

    Krempaský J, Muff S, Min´ar J, Pilet N, Fanciulli M, Weber A P, Guedes E B, Caputo M, Müller E, Volobuev V V, Gmitra M, Vaz C A F, Scagnoli V, Springholz G, Dil J H 2018 Phys. Rev. X 8 021067

    [42]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [43]

    Knez I, Du R R, Sullivan G 2012 Phys. Rev. Lett. 109 186603Google Scholar

    [44]

    Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Ye H, Han J F, Wei Z Y 2022 Appl. Phys. Lett. 120 053108Google Scholar

    [45]

    Yang M, Liu Y D, Zhou W, Liu C, Mu D, Liu Y N, Wang J O, Hao W C, Li J, Zhong J X, Du Y, Zhuang J C 2022 ACS Nano 16 2

    [46]

    Ezawa M 2012 New J. Phys. 14 033003Google Scholar

    [47]

    Zhang R W, Ji W X, Zhang C W, Li S S, Li P, Wang P J 2016 J. Mater. Chem. C 4 2088Google Scholar

    [48]

    Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W, Zhang S C 2013 Phys. Rev. Lett. 111 136804Google Scholar

    [49]

    Zhao H, Zhang C W, Ji W X, Zhang R W, Li S S, Yan S S, Zhang B M, Li P, Wang P J 2016 Sci. Rep. 6 20152Google Scholar

    [50]

    Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B, Frauenheim T 2015 Nano Lett. 15 7867Google Scholar

    [51]

    Weng H, Dai X, Fang Z 2014 Phys. Rev. X 4 011002

    [52]

    Li X, Ying D, Ma Y, Wei W, Lin Y, Huang B 2015 Nano Res. 8 2954Google Scholar

    [53]

    Luo W, Xiang H 2015 Nano Lett. 15 3230Google Scholar

    [54]

    Jiang J W, Guo X Q, Ma Z, Wang G, Xu Y G, Zhang X W 2022 J. Mater. Chem. C 10 11329Google Scholar

    [55]

    Guo Z P, Yan D Y, Sheng H H, Nie S M, Shi Y G, Wang Z J 2021 Phys. Rev. B 103 115145Google Scholar

    [56]

    Wang X, Wan W H, Ge Y F, Zhang K C, Liu Y 2022 Physica E 143 115325Google Scholar

    [57]

    Perez M N R, Villaos R A B, Feng L Y, Maghirang A B, Cheng C P, Huang Z Q, Hsu C H, Bansil A, Chuang F C 2022 Appl. Phys. Rev. 9 011410Google Scholar

    [58]

    Li J, He C Y, Xiao H P, Tang C, Wei X L, Kim J, Kioussis N, Stocks M, Zhong J X 2015 Sci. Rep. 5 14115Google Scholar

    [59]

    Yuhara J, He B, Matsunami N, Nakatake M, Le Lay G 2019 Adv. Mater. 31 e1901017Google Scholar

    [60]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [61]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 77 3865

    [62]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685Google Scholar

    [63]

    Wu Q S, Zhang S N, Song H F, Troyer M, Soluyanov A A 2018 Comput. Phys. Commun. 224 405Google Scholar

    [64]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [65]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [66]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [67]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [68]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, W. Molenkamp L, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [69]

    Liu Q, Guo Y, Freeman A 2013 Nano Lett. 13 5264Google Scholar

    [70]

    Gong Q, Zhang G L 2022 Int. J. Mol. Sci. 23 7629Google Scholar

    [71]

    Sino P A L, Feng L Y, Villaos R A B, Cruzado N H, Huang Z Q, Hsu C H, Chuang F C 2021 Nanoscale Adv. 3 6608Google Scholar

    [72]

    Hussain G, Samad A, Ur Rehman M, Guono G, Autieri C 2022 J. Magn. Magn. Mater. 563 169897Google Scholar

    [73]

    Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Lu D L, Zhong J X 2020 J. Phys. D: Appl. Phys 53 025302Google Scholar

    [74]

    Patel S, Dey U, Adhikari N P, Taraphder A 2022 Phys. Rev. B 106 035125Google Scholar

    [75]

    Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Liu H T, Zhong J X 2019 J. Phys. Condens. Matter 31 365002Google Scholar

    [76]

    Lee K, Yun W S, Lee J D 2015 Phys. Rev. B 91 125420Google Scholar

    [77]

    LaShell S, McDougall B, Jensen E 1996 Phys. Rev. Lett. 77 3419Google Scholar

  • [1] Wang Zhi-Mei, Wang Hong, Xue Nai-Tao, Cheng Gao-Yan. Quantum coherence in spin-orbit coupled quantum dots system. Acta Physica Sinica, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [2] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [3] Xue Hai-Bin, Duan Zhi-Lei, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through Su-Schrieffer-Heeger chain with spin-orbit coupling. Acta Physica Sinica, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [4] Chen Xing, Xue Xiao-Bo, Zhang Sheng-Kang, Ma Yu-Quan, Fei Peng, Jiang Yuan, Ge Jun. Ground energy level transition for two-body interacting Fermionic system with spin-orbit coupling and Zeeman interaction. Acta Physica Sinica, 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [5] Zhang Ai-Xia, Jiang Yan-Fang, Xue Ju-Kui. Nonlinear energy band structure of spin-orbit coupled Bose-Einstein condensates in optical lattice. Acta Physica Sinica, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [6] Shi Ting-Ting, Wang Liu-Jiu, Wang Jing-Kun, Zhang Wei. Some recent progresses on the study of ultracold quantum gases with spin-orbit coupling. Acta Physica Sinica, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [7] Liang Tao, Li Ming. Integer quantum Hall effect in a spin-orbital coupling system. Acta Physica Sinica, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [8] Li Zhi-Qiang, Wang Yue-Ming. One-dimensional spin-orbit coupling Bose gases with harmonic trapping. Acta Physica Sinica, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [9] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [10] Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui. Time-reversal-symmetry broken quantum spin Hall in Lieb lattice. Acta Physica Sinica, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [11] Zhao Zheng-Yin, Wang Hong-Ling, Li Ming. Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N quantum well. Acta Physica Sinica, 2016, 65(9): 097101. doi: 10.7498/aps.65.097101
    [12] Liu Sheng-Li, Li Jian-Zheng, Cheng Jie, Wang Hai-Yun, Li Yong-Tao, Zhang Hong-Guang, Li Xing-Ao. Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4. Acta Physica Sinica, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [13] Chen Dong-Hai, Yang Mou, Duan Hou-Jian, Wang Rui-Qiang. Electronic transport properties of graphene pn junctions with spin-orbit coupling. Acta Physica Sinica, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [14] Gong Shi-Jing, Duan Chun-Gang. Recent progress in Rashba spin orbit coupling on metal surface. Acta Physica Sinica, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [15] Chen Guang-Ping. Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential. Acta Physica Sinica, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [16] Zhang Lei, Li Hui-Wu, Hu Liang-Bin. Study of stability of persistent spin helix in two-dimensional electron gases with spin-orbit coupling. Acta Physica Sinica, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [17] Li Ming, Zhang Rong, Liu Bin, Fu De-Yi, Zhao Chuan-Zhen, Xie Zhi-Li, Xiu Xiang-Qian, Zheng You-Dou. Study of Rashba spin splitting and intersubband spin-orbit coupling effect in AlGaN/GaN quantum wells. Acta Physica Sinica, 2012, 61(2): 027103. doi: 10.7498/aps.61.027103
    [18] Dong Quan-Li, Zhang Jie, Yang Jie, Jiang Zhao-Tan. Electronic energy band structures of carbon nanotubeswith spin-orbit coupling interaction. Acta Physica Sinica, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [19] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [20] Zhou Qing-Chun, Wang Jia-Fu, Xu Rong-Qing. . Acta Physica Sinica, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
Metrics
  • Abstract views:  4437
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2022
  • Accepted Date:  29 November 2022
  • Available Online:  07 January 2023
  • Published Online:  05 March 2023

/

返回文章
返回