-
Lithography plays a vital important role in modern information technologies. Patterning on a nanoscale in a handy way is highly desired for both scientific and industrial purposes. In this work, we propose a convenient nanolithography method based on Fresnel diffraction patterns. We start with the explanation of the “dense-inside-sparse-outside” Fresnel diffraction fringes resulting from the apertures of finite extent, by using the fast Fourier transform algorithm through appropriately choosing the number of uniformly spaced samples. Moderately focusing the diffraction patterns via high-numerical-aperture objectives ( the method is termed the “Fresnel diffraction lithography”), the rotationally symmetric patterns with a minimum feature size of ~190 nm, and the scanning lines with a width of ~350 nm are realized, respectively, The calculation using vectorial diffraction theory suggests a better resolution when perfectly focused. This method shows good tolerance to defocus and does not require complex lens combinations or micro/nano-diffraction optical elements, Therefore, this method can find some applications in widespread areas, e.g. functional metasurfaces, as a novel and low-cost nano-patterning technology with sub-wavelength resolution and high flexibility.
-
Keywords:
- Fresnel diffraction /
- beam expander /
- nanolithography /
- direct writing lithography
[1] Menon R, Patel A, Gil D, Smith H I 2005 Mater. Today 8 26Google Scholar
[2] Xu K, Qin J, Wang L 2021 Opt. Lett. 46 5185Google Scholar
[3] Sanders D P 2010 Chem. Rev. 110 321Google Scholar
[4] School J S, Schenau K I, Valentin C, Migura S 2015 Proc. SPIE 9422, Extreme Ultraviolet (EUV) Lithography VI San Jose, California, United States, March 16, 2015 p94221F
[5] Chen Y F 2015 Microelectron. Eng. 135 57Google Scholar
[6] Langford R M, Nellen P M, Gierak J, Fu Y 2007 MRS Bull. 32 417Google Scholar
[7] Traub M C, Longsine W, Truskett V N 2016 Annu. Rev. Chem. Biomol. Eng. 7 583Google Scholar
[8] Seino Y, Yonemitsu H, Sato H, Kanno M, Kato H, Kobayashi K, Kawanishi A, Azuma T, Muramatsu M, Nagahara S, Kitano T, Toshima T 2013 J. Micro-Nanolitho. Mems. Moems. 12 033011Google Scholar
[9] Jiang Z, Liu Y, Liang W 2022 Opto-Electron. Sci. 1 210004Google Scholar
[10] Jiang Z J, Luo H W, Guo S P, Wang L 2019 Opt. Lett. 44 783Google Scholar
[11] 李小宝, 王春晖, 曲扬, 任逍遥 2015 激光与光电子学进展 52 6Google Scholar
Li X B, Wang C H, Qu Y, Ren X Y 2015 Laser Optoelectron. Prog. 52 6Google Scholar
[12] 顾敏芬, 梁忠诚 2000 南京师大学报(自然科学版) 23 4Google Scholar
Gu M F, Liang Z C 2000 J. Nanjing Normal Univ. (Nat. Sci.) 23 4Google Scholar
[13] Kelly D P 2014 J. Opt. Soc. Am. A: 31 755
[14] Mas D, Perez J, Hernandez C, Vazquez C, Miret J J, Illueca C 2003 Opt. Commun. 227 245Google Scholar
[15] 古德曼 J W 著 (秦克诚 刘培森 陈嘉璧 曹其智译) 2011 傅里叶光学导论(第3版) (北京: 电子工业出版社) 第48, 49页
Goodman J W 2011 Introduction to Fourier Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) pp48, 49 (in chinese)
[16] Zhang W, Zhang H, Sheppard C J R, Jin G 2020 J. Opt. Soc. Am. A 37 1748Google Scholar
[17] Lee K G, Kihm H W, Kihm J E, Choi W J, Kim H, Ropers C, Park D J, Yoon Y C, Choi S B, Woo D H, Kim J, Lee B, Park Q H, Lienau C, Kim D S 2006 Nat. Photonics 1 53Google Scholar
[18] Liu T, Tan J, Liu J, Wang H 2013 Opt. Express 21 15090Google Scholar
[19] Kim J, Wang Y, Zhang X 2018 J Opt. Soc. Am. A 35 526Google Scholar
[20] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明 2020 物理学报 69 184215Google Scholar
Liu K, He T, Liu T, Li G Q, Tian B, Wang J Y, Yang S M 2020 Acta Phys. Sin. 69 184215Google Scholar
[21] Wolf E 1959 Proc. R. Soc. London, Ser. A 253 349Google Scholar
[22] Hu Y, Wang Z, Wang X, Ji S, Zhang C, Li J, Zhu W, Wu D, Chu J 2020 Light Sci. Appl. 9 119Google Scholar
[23] Born M, Wolf E 1999 Principles of Optics (7th Ed.) (Cambridge: Cambridge University Press)
[24] Bluestein L 1970 IEEE Trans. Audio Electroacoust. 18 451Google Scholar
[25] Rabiner L, Schafer R, Rader C 1969 IEEE Trans. Audio Electroacoust. 17 86Google Scholar
[26] 刘涛 2014 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Liu T 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in chinese)
-
图 3 光阑后方菲涅尔衍射图案 (a), (b) 距离8 mm孔径光阑8 cm处的衍射图案照片(a)及理论计算(b); (c), (d) 分别为图(a)和图(b)的局部细节; (e), (f) 距离5 mm孔径光阑9.5 cm处的衍射图案照片(e)及理论计算(f)
Figure 3. Fresnel diffraction patterns behind the aperture: (a) The captured and (b) calculated images at 8 cm away from an 8-mm-diameter aperture. Zoomed-in images of Figure (a) and Figure (b) are respectively shown in Figure (c) and Figure (d). Optical spots at different positions. Also shown are the captured (e) and calculated (f) images at 9.5 cm away from a 5-mm-diameter aperture.
图 4 菲涅尔衍射光刻示意图 (a), (b) 计算得到的直径6 mm光阑后方20 cm处菲涅尔衍射图案(a)及其中心附近放大细节(b); (c)菲涅尔衍射光刻实验示意图
Figure 4. Set-up for Fresnel diffraction lithography: (a), (b) The simulated Fresnel diffraction pattern(a) at a distance of 20 cm behind a 6 mm-aperture and its zoomed-in image near the center (b); (c) depiction of the lithography apparatus.
图 5 菲涅尔衍射静态光刻 (a)—(d) 油镜与样品间距g时的静态光刻图形OM照片(a), UV-OM照片(b), AFM图像(c)及表面形貌(d); (e)—(h) 油镜与样品间距g – 0.2 mm时的静态光刻图形OM照片(e), UV-OM照片(f), AFM图像(g)及表面形貌(h)
Figure 5. Fresnel diffraction lithography results: (a)–(d) The captured OM (a)/(e), UV-OM (b)/(f) and AFM (c)/(g) images obtained when the lens-sample distance is g/g – 0.2 mm. Also shown are the line profiles (d), (h) at positions indicated by blue and green solid lines in Figure (c) and Figure (g), respectively.
图 6 菲涅尔衍射扫描光刻 (a)—(d) 油镜与样品间距g时扫描速度100 μm/s ((a), (b)), 200 μm/s((c), (d))的动态光刻图形UV-OM照片; (e)—(h) 油镜与样品间距g – 0.2 mm时扫描速度为100((e), (f))和200 μm/s((g), (h))的动态光刻图形UV-OM照片; (i), (j) 油镜与样品间距g, g – 0.2 mm时扫描速度100 μm/s所得图形的AFM图像. 比例尺均为5 μm
Figure 6. Fresnel diffraction scanning lithography: (a)–(h) With the scanning speed of 100 and 200 μm/s, the captured UV-OM ((a)–(d), (e)–(h)) images obtained when the lens-sample distance is g and g – 0.2 mm, respectively. Also shown are the AFM images (i), (j) with a scanning speed of 100 μm/s at g and g – 0.2 mm, respectively. Scale bars: 5 μm
图 7 矢量衍射理论计算得到的油镜焦点处光场分布(a)及其在x, y方向上的半高全宽信息((b), (c)); (d)对数尺度上焦平面光场分布
Figure 7. Calculated light field distribution on the focal plane of oil immersion objectives (a) along with the full width at half maximum in x- (b) and y-direction (c) using vectorial diffraction theory. (d) Focused light distribution plotted on a log scale.
-
[1] Menon R, Patel A, Gil D, Smith H I 2005 Mater. Today 8 26Google Scholar
[2] Xu K, Qin J, Wang L 2021 Opt. Lett. 46 5185Google Scholar
[3] Sanders D P 2010 Chem. Rev. 110 321Google Scholar
[4] School J S, Schenau K I, Valentin C, Migura S 2015 Proc. SPIE 9422, Extreme Ultraviolet (EUV) Lithography VI San Jose, California, United States, March 16, 2015 p94221F
[5] Chen Y F 2015 Microelectron. Eng. 135 57Google Scholar
[6] Langford R M, Nellen P M, Gierak J, Fu Y 2007 MRS Bull. 32 417Google Scholar
[7] Traub M C, Longsine W, Truskett V N 2016 Annu. Rev. Chem. Biomol. Eng. 7 583Google Scholar
[8] Seino Y, Yonemitsu H, Sato H, Kanno M, Kato H, Kobayashi K, Kawanishi A, Azuma T, Muramatsu M, Nagahara S, Kitano T, Toshima T 2013 J. Micro-Nanolitho. Mems. Moems. 12 033011Google Scholar
[9] Jiang Z, Liu Y, Liang W 2022 Opto-Electron. Sci. 1 210004Google Scholar
[10] Jiang Z J, Luo H W, Guo S P, Wang L 2019 Opt. Lett. 44 783Google Scholar
[11] 李小宝, 王春晖, 曲扬, 任逍遥 2015 激光与光电子学进展 52 6Google Scholar
Li X B, Wang C H, Qu Y, Ren X Y 2015 Laser Optoelectron. Prog. 52 6Google Scholar
[12] 顾敏芬, 梁忠诚 2000 南京师大学报(自然科学版) 23 4Google Scholar
Gu M F, Liang Z C 2000 J. Nanjing Normal Univ. (Nat. Sci.) 23 4Google Scholar
[13] Kelly D P 2014 J. Opt. Soc. Am. A: 31 755
[14] Mas D, Perez J, Hernandez C, Vazquez C, Miret J J, Illueca C 2003 Opt. Commun. 227 245Google Scholar
[15] 古德曼 J W 著 (秦克诚 刘培森 陈嘉璧 曹其智译) 2011 傅里叶光学导论(第3版) (北京: 电子工业出版社) 第48, 49页
Goodman J W 2011 Introduction to Fourier Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) pp48, 49 (in chinese)
[16] Zhang W, Zhang H, Sheppard C J R, Jin G 2020 J. Opt. Soc. Am. A 37 1748Google Scholar
[17] Lee K G, Kihm H W, Kihm J E, Choi W J, Kim H, Ropers C, Park D J, Yoon Y C, Choi S B, Woo D H, Kim J, Lee B, Park Q H, Lienau C, Kim D S 2006 Nat. Photonics 1 53Google Scholar
[18] Liu T, Tan J, Liu J, Wang H 2013 Opt. Express 21 15090Google Scholar
[19] Kim J, Wang Y, Zhang X 2018 J Opt. Soc. Am. A 35 526Google Scholar
[20] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明 2020 物理学报 69 184215Google Scholar
Liu K, He T, Liu T, Li G Q, Tian B, Wang J Y, Yang S M 2020 Acta Phys. Sin. 69 184215Google Scholar
[21] Wolf E 1959 Proc. R. Soc. London, Ser. A 253 349Google Scholar
[22] Hu Y, Wang Z, Wang X, Ji S, Zhang C, Li J, Zhu W, Wu D, Chu J 2020 Light Sci. Appl. 9 119Google Scholar
[23] Born M, Wolf E 1999 Principles of Optics (7th Ed.) (Cambridge: Cambridge University Press)
[24] Bluestein L 1970 IEEE Trans. Audio Electroacoust. 18 451Google Scholar
[25] Rabiner L, Schafer R, Rader C 1969 IEEE Trans. Audio Electroacoust. 17 86Google Scholar
[26] 刘涛 2014 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Liu T 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in chinese)
Catalog
Metrics
- Abstract views: 5203
- PDF Downloads: 96
- Cited By: 0