Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermocapillary migration of thin droplet on wettability-confined track

Li Chun-Xi Ma Cheng Ye Xue-Min

Citation:

Thermocapillary migration of thin droplet on wettability-confined track

Li Chun-Xi, Ma Cheng, Ye Xue-Min
PDF
HTML
Get Citation
  • The thermocapillary migration of droplets on a solid surface is widely used in daily life and industrial fields. Regulating droplet thermocapillary migration by changing surface wettability has received extensive attention. According to the lubrication theory and slip boundary conditions, we establish a mathematical model of the thermocapillary migration dynamics of a droplet on wettability-confined tracks subjected to a uniform temperature gradient. Combined with the contact line dynamics, a method of determining the velocity of the contact line in a different direction of the three-dimensional droplet is proposed, the simulation is carried out with FreeFEM++. The evolution of droplet migration is examined, and the effects of track width and wettability on the droplet migration dynamics are emphatically investigated. The results show that the main part of the droplet moves from the high-temperature region to the low-temperature region, the trailing edge of the droplet forms a small bulge during the movement, and a thin liquid film is formed between the bulge and the main part of the droplet. The droplet spreading perpendicular to the track direction is inhibited and remains pinned after shrinking to the track edge. Negative correlation between the velocity of the advancing contact line and the track width is observed. The velocity of the advancing line first rapidly and then slowly decrease to a steady state. The squeezing effect caused by the wettability confined perpendicular to the track direction accelerates the thermocapillary migration of the droplet on the track in the initial short time. The enhanced track wettability increases the initial velocity of the receding contact line but has little effect on its stable value. The velocity of the advancing contact line is positively correlated with track wettability. Changing the track width is possibly easier to regulate the thermocapillary migration of a droplet than varying the track wettability.
      Corresponding author: Ye Xue-Min, yexuemin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51876065) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015502058).
    [1]

    Daniel S, Chaudhury M K, Chen J C 2001 Science 291 633Google Scholar

    [2]

    Bakli C, PD S H, Chakraborty S 2017 Nanoscale 9 12509Google Scholar

    [3]

    Musin A, Grynyov R, Frenkel M, Bormashenko E 2016 J. Colloid Interface Sci. 479 182Google Scholar

    [4]

    Dhiman S, Jayaprakash K, Iqbal R, Sen A 2018 Langmuir 34 12359Google Scholar

    [5]

    王飞, 彭岚, 张全壮, 刘佳 2015 物理学报 64 140202Google Scholar

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202Google Scholar

    [6]

    Karapetsas G, Chamakos N T, Papathanasiou A G 2017 Langmuir 33 10838Google Scholar

    [7]

    Dai Q W, Huang W, Wang X L 2014 Exp. Therm. Fluid Sci. 57 200Google Scholar

    [8]

    Chaudhury M K, Whitesides G M 1992 Science 256 1539Google Scholar

    [9]

    Qi L, Niu Y, Ruck C, Zhao Y 2019 Lab Chip 19 223Google Scholar

    [10]

    石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595Google Scholar

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595Google Scholar

    [11]

    Dai Q W, Huang W, Wang X L, Khonsari M M 2021 Tribol. Int. 154 106749Google Scholar

    [12]

    Ghosh A, Ganguly R, Schutzius T M, Megaridis C M 2014 Lab Chip 14 1538Google Scholar

    [13]

    Sen U, Chatterjee S, Ganguly R, Dodge R, Yu L, Megaridis C M 2018 Langmuir 34 1899Google Scholar

    [14]

    姚祎, 周哲玮, 胡国辉 2013 物理学报 62 134701Google Scholar

    Yao W, Zhou Z W, Hu G H 2013 Acta Phys. Sin. 62 134701Google Scholar

    [15]

    Wang M, Liu Q, Zhang H R, Wang C, Wang L, Xiang B X, Fan Y T, Guo C F, Ruan S C 2017 ACS Appl. Mater. Interfaces 9 29248Google Scholar

    [16]

    Dai Q W, Ji Y J, Chong Z J, Huang W, Wang X L 2019 J. Colloid Interface Sci. 557 837Google Scholar

    [17]

    Fu X J, Sun J J, Ba Y 2022 Phys. Fluids 34 012119Google Scholar

    [18]

    Diddens C, Kuerten J G, Van der Geld C, Wijshoff H 2017 J. Colloid Interface Sci. 487 426Google Scholar

    [19]

    李春曦, 程冉, 叶学民 2021 物理学报 70 204701Google Scholar

    Li C X, Cheng R, Ye X M 2021 Acta Phys. Sin. 70 204701Google Scholar

    [20]

    Ye X M, Zhang N K, Cheng R, Li C X 2022 J. Appl. Fluid Mech. 15 1361

    [21]

    Gomba J M, Homsy G M 2010 J. Fluid Mech. 647 125Google Scholar

    [22]

    Beltrame P, Knobloch E, Hänggi P, Thiele U 2011 Phys. Rev. E 83 016305Google Scholar

    [23]

    Ehrhard P, Davis S H 1991 J. Fluid Mech. 229 365Google Scholar

    [24]

    Smith M K 1995 J. Fluid Mech. 294 209Google Scholar

    [25]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892Google Scholar

    [26]

    叶学民, 李永康, 李春曦 2016 物理学报 65 104704Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704Google Scholar

    [27]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 物理学报 67 184704Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta Phys. Sin. 67 184704Google Scholar

    [28]

    Nagy M, Škvarla J 2013 Acta Montanistica Slovaca 18 125

    [29]

    Dai Q W, Khonsari M M, Shen C, Huang W, Wang X L 2016 Langmuir 32 7485Google Scholar

    [30]

    Mukhopadhyay S, Murisic N, Behringer R P, Kondic L 2011 Phys. Rev. E 83 046302

    [31]

    Chowdhury I U, Mahapatra P S, Sen A K 2019 Phys. Fluids 31 042111Google Scholar

    [32]

    宋金龙, 徐文骥 2017 金属加工: 冷加工 2017 65

    Song J L, Xu W J 2017 Metal Working: Metal Cutting 2017 65

  • 图 1  (a) 液滴剖面图; (b) 润湿性受限轨道示意图

    Figure 1.  (a) Profile of the droplet; (b) diagram of a wettability-confined track.

    图 2  接触角监测点位置图

    Figure 2.  Diagram of contact angle monitoring points.

    图 3  模拟结果与实验结果对比(图中上半部分为文献[29]的实验结果, 右侧的标尺表示模拟所得液膜厚度)

    Figure 3.  Comparison of simulated and experiment results (the upper part of the figure is cited from the literature [29], the scale on the right of the figure indicates the thickness of the droplet from the simulation results).

    图 4  液滴迁移距离随时间的变化

    Figure 4.  Temporal evolution of droplet migration distance.

    图 5  (a) 液滴轮廓演化; (b) 液滴接触线随时间变化

    Figure 5.  (a) Evolution of droplet; (b) temporal evolution of droplet contact lines.

    图 6  液滴演化历程 (a) t = 100的液滴三维外形图; (b) t = 40000的液滴三维外形图; (c) 液滴沿x方向的投影; (d) 液滴沿y方向的投影

    Figure 6.  Evolution of droplet: (a) 3D droplet shape at t = 100; (b) 3D droplet shape at t = 40000; (c) profile along the x-direction; (d) profile along the y-direction.

    图 7  接触线随时间的变化 (a) 前进接触线和后退接触线; (b) 左右两侧接触线; (c)后退接触线处的不同主导因素; (d) 前进接触线处的不同主导因素

    Figure 7.  Temporal evolution of droplet contact lines: (a) The advancing and receding contact lines; (b) left and right contact lines; (c) effects of capillarity, gravity and thermal Marangoni at the receding contact line; (d) effects of capillarity, gravity and thermal Marangoni at the advancing contact line.

    图 8  液滴动态接触角随时间的变化 (a) 液滴前进接触角和后退接触角; (b)液滴左侧接触角

    Figure 8.  Temporal evolution of droplet dynamic contact angles: (a) The advancing and receding contact angles of the droplet; (b) the left contact angle of the droplet.

    图 9  轨道宽度E对接触线位置、移动速度和接触角的影响 (a) 后退接触线; (b) 前进接触线; (c) 后退接触线移动速度; (d) 前进接触线移动速度; (e) 右侧接触线; (f) 前进和后退接触角

    Figure 9.  The effect of E on the position, velocity of contact lines and contact angles: (a) Receding contact line position; (b) advancing contact line position; (c) the velocity of receding contact line; (d) the velocity of advancing contact line; (e) right contact line; (f) the advancing and receding contact angles.

    图 10  润湿性对接触线移动速度的影响 (a) 后退接触线移动速度; (b) 前进接触线移动速度

    Figure 10.  The effect of wettability on the velocity of contact lines: (a) The velocity of receding contact line; (b) the velocity of advancing contact line.

    表 1  网格无关性验证

    Table 1.  Validation of grid independence.

    网格数目液滴前进
    接触角 θa
    液滴前进接触线
    移动速度 ua/10–4
    计算所需
    CPU时长/h
    45840.15061.7213.15
    100280.15341.7798.02
    155780.15361.78114.21
    DownLoad: CSV

    表 2  有量纲参数及典型数量级

    Table 2.  Typical order of dimension parameters.

    物性参数符号 / 单位典型数量级
    液滴厚度$ \widetilde{H}/ {\rm{m}}$10–4
    长度特征尺度$ \widetilde{L}/ {\rm{m}}$10–3
    液体黏度$\widetilde{\mu }/ ({\rm{Pa} }{\cdot} {\rm{s} })$10–3
    液体密度$\widetilde{\rho }/ ({\rm{kg} }{\cdot} {\rm{m} }^{-3} )$103
    传热系数$\widetilde{\alpha }/({\rm{kW} }{\cdot}{\rm{m} }^{-2}{\cdot}{\rm{K} }^{-1} )$1—10
    壁面温度$ \widetilde{T}/{\rm{K}} $103—102
    界面张力$\widetilde{\sigma }/ ({\rm{N} }{\cdot} {\rm{m} }^{-1} )$10–2
    特征速度$\widetilde{U}=\dfrac{\widetilde{\sigma }_{ {T}_{0} }-\widetilde{\sigma }_{ {T}_{\rm{m} } } }{\widetilde{H}/\left(\tilde{\mu }\tilde{L}\right)}/ ({\rm{m} }{\cdot} {\rm{s} }^{-1}$)10–4—1
    DownLoad: CSV

    表 3  无量纲参数取值范围

    Table 3.  Range of dimensionless parameters.

    无量纲参数定义式取值范围
    小量ε${\varepsilon }=\widetilde{H}/\widetilde{L}$10–2—10–1
    邦德数Bo$ Bo=\widetilde{\rho }g{\widetilde{H}}^{2}/\widetilde{\mu }U $10–2—10–1
    温度梯度$ \varGamma $$\varGamma =\dfrac{(d{\widetilde{T} }_{\rm{w} }/{\rm{d}}\widetilde{x})\widetilde{L} }{ {\widetilde{T} }_{\rm{m} }-{\widetilde{T} }_{0} }$10–3—10–2
    毛细数C$ C=\dfrac{{\varepsilon }^{2}{\widetilde{\sigma }}_{{\widetilde{T}}_{\rm{m}}}}{{\widetilde{\sigma }}_{{\widetilde{T}}_{0}}-{\widetilde{\sigma }}_{{\widetilde{T}}_{\rm{m}}}} $10–2—10–1
    界面温度敏感系数$\varOmega_{\rm{i}} $$ {\varOmega }_{\rm{i}}=\dfrac{{\widetilde{\alpha }}_{T\rm{i}}({\widetilde{T}}_{\rm{m}}-{\widetilde{T}}_{0})}{{\widetilde{\sigma }}_{{\rm{i}, \widetilde{T}}_{0}}-{\widetilde{\sigma }}_{{\rm{l}\rm{g}, \widetilde{T}}_{\rm{m}}}} $0—102
    DownLoad: CSV
  • [1]

    Daniel S, Chaudhury M K, Chen J C 2001 Science 291 633Google Scholar

    [2]

    Bakli C, PD S H, Chakraborty S 2017 Nanoscale 9 12509Google Scholar

    [3]

    Musin A, Grynyov R, Frenkel M, Bormashenko E 2016 J. Colloid Interface Sci. 479 182Google Scholar

    [4]

    Dhiman S, Jayaprakash K, Iqbal R, Sen A 2018 Langmuir 34 12359Google Scholar

    [5]

    王飞, 彭岚, 张全壮, 刘佳 2015 物理学报 64 140202Google Scholar

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202Google Scholar

    [6]

    Karapetsas G, Chamakos N T, Papathanasiou A G 2017 Langmuir 33 10838Google Scholar

    [7]

    Dai Q W, Huang W, Wang X L 2014 Exp. Therm. Fluid Sci. 57 200Google Scholar

    [8]

    Chaudhury M K, Whitesides G M 1992 Science 256 1539Google Scholar

    [9]

    Qi L, Niu Y, Ruck C, Zhao Y 2019 Lab Chip 19 223Google Scholar

    [10]

    石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595Google Scholar

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595Google Scholar

    [11]

    Dai Q W, Huang W, Wang X L, Khonsari M M 2021 Tribol. Int. 154 106749Google Scholar

    [12]

    Ghosh A, Ganguly R, Schutzius T M, Megaridis C M 2014 Lab Chip 14 1538Google Scholar

    [13]

    Sen U, Chatterjee S, Ganguly R, Dodge R, Yu L, Megaridis C M 2018 Langmuir 34 1899Google Scholar

    [14]

    姚祎, 周哲玮, 胡国辉 2013 物理学报 62 134701Google Scholar

    Yao W, Zhou Z W, Hu G H 2013 Acta Phys. Sin. 62 134701Google Scholar

    [15]

    Wang M, Liu Q, Zhang H R, Wang C, Wang L, Xiang B X, Fan Y T, Guo C F, Ruan S C 2017 ACS Appl. Mater. Interfaces 9 29248Google Scholar

    [16]

    Dai Q W, Ji Y J, Chong Z J, Huang W, Wang X L 2019 J. Colloid Interface Sci. 557 837Google Scholar

    [17]

    Fu X J, Sun J J, Ba Y 2022 Phys. Fluids 34 012119Google Scholar

    [18]

    Diddens C, Kuerten J G, Van der Geld C, Wijshoff H 2017 J. Colloid Interface Sci. 487 426Google Scholar

    [19]

    李春曦, 程冉, 叶学民 2021 物理学报 70 204701Google Scholar

    Li C X, Cheng R, Ye X M 2021 Acta Phys. Sin. 70 204701Google Scholar

    [20]

    Ye X M, Zhang N K, Cheng R, Li C X 2022 J. Appl. Fluid Mech. 15 1361

    [21]

    Gomba J M, Homsy G M 2010 J. Fluid Mech. 647 125Google Scholar

    [22]

    Beltrame P, Knobloch E, Hänggi P, Thiele U 2011 Phys. Rev. E 83 016305Google Scholar

    [23]

    Ehrhard P, Davis S H 1991 J. Fluid Mech. 229 365Google Scholar

    [24]

    Smith M K 1995 J. Fluid Mech. 294 209Google Scholar

    [25]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892Google Scholar

    [26]

    叶学民, 李永康, 李春曦 2016 物理学报 65 104704Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704Google Scholar

    [27]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 物理学报 67 184704Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta Phys. Sin. 67 184704Google Scholar

    [28]

    Nagy M, Škvarla J 2013 Acta Montanistica Slovaca 18 125

    [29]

    Dai Q W, Khonsari M M, Shen C, Huang W, Wang X L 2016 Langmuir 32 7485Google Scholar

    [30]

    Mukhopadhyay S, Murisic N, Behringer R P, Kondic L 2011 Phys. Rev. E 83 046302

    [31]

    Chowdhury I U, Mahapatra P S, Sen A K 2019 Phys. Fluids 31 042111Google Scholar

    [32]

    宋金龙, 徐文骥 2017 金属加工: 冷加工 2017 65

    Song J L, Xu W J 2017 Metal Working: Metal Cutting 2017 65

  • [1] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] Li Wen, Ma Xiao-Jing, Xu Jin-Liang, Wang Yan, Lei Jun-Peng. Effects of base angle and wettability of nanostructures on droplet wetting behaviors. Acta Physica Sinica, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [3] Peng Jia-Lue, Guo Hao, You Tian-Ya, Ji Xian-Bing, Xu Jin-Liang. Behavioral characteristics of droplet collision on Janus particle spheres. Acta Physica Sinica, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [4] Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel. Acta Physica Sinica, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [5] Fan Zeng-Hua, Rong Wei-Bin, Liu Zi-Xiao, Gao Jun, Tian Ye-Bing. Migration characteristics of droplet condensation on end surface of single-finger microgripper. Acta Physica Sinica, 2020, 69(18): 186801. doi: 10.7498/aps.69.20200463
    [6] Wei Yan-Ju, Zhang Jie, Deng Sheng-Cai, Zhang Ya-Jie, Yang Ya-Jing, Liu Sheng-Hua, Chen Hao. Phenomenon study on heat induced atomization of acoustic levitated methanol droplet. Acta Physica Sinica, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [7] Yang Ya-Jing, Mei Chen-Xi, Zhang Xu-Dong, Wei Yan-Ju, Liu Sheng-Hua. Kinematics and passing modes of a droplet impacting on a soap film. Acta Physica Sinica, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [8] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Thermocapillary migration characteristics of self-rewetting drop. Acta Physica Sinica, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [9] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [10] Xiong Qi-Yu, Dong Lei, Jiao Yun-Long, Liu Xiao-Jun, Liu Kun. Wettability of surfaces with different surface microstructures textured by laser. Acta Physica Sinica, 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [11] Wang Tao, Li Jun-Jie, Wang Jin-Cheng. Phase field modeling of the influence of interfacial wettability and solid volume fraction on the kinetics of coarsening. Acta Physica Sinica, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [12] Zhao Ning, Huang Ming-Liang, Ma Hai-Tao, Pan Xue-Min, Liu Xiao-Ying. Viscosities and wetting behaviors of Sn-Cu solders. Acta Physica Sinica, 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [13] Yao Yi, Zhou Zhe-Wei, Hu Guo-Hui. Movement of a droplet on a structured substrate: A dissipative particle dynamics simulation study. Acta Physica Sinica, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [14] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [15] Yan Zhen-Lin, Xie Wen-Jun, Shen Chang-Le, Wei Bing-Bo. Surface capillary wave and the eighth mode sectorial oscillation of acoustically levitated drop. Acta Physica Sinica, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [16] Guo Jia-Hong, Dai Shi-Qiang, Dai Qin. Experimental research on the droplet impacting on the liquid film. Acta Physica Sinica, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [17] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] Wang Xiao-Dong, Dong Peng, Chen Sheng-Li, Yi Gui-Yun. The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Physica Sinica, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [19] Wang Xiao-Dong, Dong Peng, Chen Sheng-Li, Yi Gui-Yun. The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Physica Sinica, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [20] WANG CHAO-YING, ZHAI GUANG-JIE, WU LAN-SHENG, MAI ZHEN-HONG, LI HONG, ZHANG HAI -FENG, DING BING-ZHE. EFFECT OF GRAVITY ON THE WETTING BEHAVIOR OF MOLTEN GaSb DROP. Acta Physica Sinica, 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
Metrics
  • Abstract views:  2104
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  01 August 2022
  • Accepted Date:  28 October 2022
  • Available Online:  03 November 2022
  • Published Online:  20 January 2023

/

返回文章
返回