Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transport of closed ring containing chiral active particles under transversal temperature difference

Liao Jing-Jing Kang Qi Luo Fei Lin Fu-Jun

Citation:

Transport of closed ring containing chiral active particles under transversal temperature difference

Liao Jing-Jing, Kang Qi, Luo Fei, Lin Fu-Jun
PDF
HTML
Get Citation
  • Active matter is a new and challenging field of physics. Chiral active particle experiences a constant torque and performs circular motion due to the self-propulsion force not aligning with the propulsion direction. Recently, most of studies of the active particle systems focused on constant temperature, but did not take into consideration the constraints by the barriers. In our work, the rectification of a ring containing chiral active particles with transversal temperature difference is numerically investigated in a two-dimensional periodic channel. It is found that the ring powered by chiral active particles can be rectified by the transversal temperature difference and the direction of the transport is determined by the chirality of active particles. The average velocity is a peaked function of angular velocity, the temperature of the lower wall or temperature difference. The transport behaviors of the ring containing one chiral active particle is qualitatively different from those of the ring containing several particles. Especially, the ring radius can strongly affect the transport behaviors. For the ring containing one chiral active particle, the interaction between the particle and the ring facilitates the rectification of the ring when the circular trajectory radius of the chiral particle is large. The average velocity decreases with the increase of the ring radius because the propelling force to the ring by the particle is small. When the circular trajectory radius is small, the interaction between the particle and the ring suppresses the transport. The speed increases as the ring radius increases because the directional transport comes from the difference in temperature between the upper wall and the lower wall. For the ring containing several particles, the interaction between particles reduces the rectification of the ring. The average velocity increases with the increase of the ring radius due to the interaction between particles decreasing. Remarkably, the velocity of the ring decreases as the particle number increases when the ring radius is small, but is a peaked function when the ring radius is not small. Our results offer new possibilities for manipulating an active particle flow on a microscale, and can be applied practically to propelling carriers and motors by a bath of bacteria or artificial microswimmers, such as hybrid micro-device engineering, drug delivery, micro-fluidics, and lab-on-chip technology.
      Corresponding author: Luo Fei, gzluofei@126.com ; Lin Fu-Jun, fujun012@yeah.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905086, 12265014), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20212BAB201015), the Science and Technology Planning Project of Ganzhou City, China (Grant No. 202101095077), and the Research Foundation for Advanced Talents of Jiangxi University of Science and Technology, China
    [1]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [2]

    Liebchen B, Levis D 2017 Phys. Rev. Lett. 119 058002Google Scholar

    [3]

    Levis D, Liebchen B 2018 J. Phys.: Condens. Matter 30 084001Google Scholar

    [4]

    Reichhardt C J O, Reichhardt C 2017 Nat. Phys. 13 10Google Scholar

    [5]

    Potiguar F Q, Farias G A, Ferreira W P 2014 Phys. Rev. E 90 012307Google Scholar

    [6]

    Lauga E, DiLuzio W R, Whitesides G M, Stone H A 2006 Biophys. J. 90 400Google Scholar

    [7]

    Loose M, Mitchison T J 2014 Nat. Cell Biol. 16 38Google Scholar

    [8]

    Nguyen N H P, Klotsa D, Engel M, Glotzer S C 2014 Phys. Rev. Lett. 112 075701Google Scholar

    [9]

    Scholz C, Engel M, Pöschel T 2018 Nat. Commun. 9 931Google Scholar

    [10]

    Scholz C, Jahanshahi S, Ldov A, Löwen H 2018 Nat. Commun. 9 5156Google Scholar

    [11]

    Lei Q, Ciamarra M P, Ni R 2019 Sci. Adv. 5 eaau7423Google Scholar

    [12]

    Liao G J, Klapp S H L 2018 Soft Matter 14 7873Google Scholar

    [13]

    Reichhardt C, Reichhardt C J O 2019 J. Chem. Phys. 150 064905Google Scholar

    [14]

    Metselaar L, Doostmohammadi A, Yeomans J M 2019 J. Chem. Phys. 150 064909Google Scholar

    [15]

    Ma F, Wang S, Wu D T, Wu N 2015 Proc. Natl. Acad. Sci. 112 6307Google Scholar

    [16]

    Ventejou B, Chaté H, Montagne R, Shi X 2021 Phys. Rev. Lett. 127 238001Google Scholar

    [17]

    Mijalkov M, Volpe G 2013 Soft Matter 9 6376Google Scholar

    [18]

    Ai B Q, Chen Q 2015 J. Chem. Phys. 143 104113Google Scholar

    [19]

    Ai B Q, He Y F, Zhong W R 2015 Soft Matter 11 3852Google Scholar

    [20]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101Google Scholar

    [21]

    Olson Reichhardt C J, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51Google Scholar

    [22]

    Liao J J, Huang X Q, Ai B Q 2018 J. Chem. Phys. 148 094902Google Scholar

    [23]

    Li Y, Ghosh P K, Marchesoni F, Li B 2014 Phys. Rev. E 90 062301Google Scholar

    [24]

    Geiseler A, Hänggi P, Marchesoni F, Mulhern C, Savel’ev S 2016 Phys. Rev. E 94 012613Google Scholar

    [25]

    Ghosh P K, Li Y, Marchesoni F, Nori F 2015 Phys. Rev. E 92 012114Google Scholar

    [26]

    Geiseler A, Hänggi P, Marchesoni F 2017 Sci. Rep. 7 41884Google Scholar

    [27]

    Galajda P, Keymer J, Chaikin P, Austin R 2007 J. Bacteriol. 189 8704Google Scholar

    [28]

    McDermott D, Reichhardt C J O, Reichhardt C 2016 Soft Matter 12 8606Google Scholar

    [29]

    Ghosh P K, Misko V R, Marchesoni F, Nori F 2013 Phys. Rev. Lett. 110 268301Google Scholar

    [30]

    Sandor C, Libal A, Reichhardt C, Reichhardt C J O 2017 Phys. Rev. E 95 012607Google Scholar

    [31]

    Reichhardt C, Reichhardt C J O 2018 Phys. Rev. E 97 052613Google Scholar

    [32]

    Reichhardt C, Reichhardt C J O 2017 J. Phys.: Condens. Matter 30 015404Google Scholar

    [33]

    Reichhardt C J O, Reichhardt C 2018 New J. Phys. 20 025002Google Scholar

    [34]

    Schakenraad K, Ravazzano L, Sarkar N, Wondergem J, Giomi 2020 Phys. Rev. E 101 032602Google Scholar

    [35]

    Kaiser A, Popowa K, Wensink H H, Löwen H 2013 Phys. Rev. E 88 022311Google Scholar

    [36]

    Kumar N, Gupta R K, Soni H, Ramaswamy S, Sood A K 2019 Phys. Rev. E 99 032605Google Scholar

    [37]

    Ribeiro H E, Ferreira W P, Potiguar F Q 2020 Phys. Rev. E 101 032126Google Scholar

    [38]

    Borba A D, Domingos J L, Moraes E C B, Potiguar F Q, Ferreira W P 2020 Phys. Rev. E 101 022601Google Scholar

    [39]

    Yang Q, Zhu H, Liu P, Liu R, Shi Q, Chen K, Zheng N, Ye F, Yang M 2021 Phys. Rev. Lett. 126 198001Google Scholar

    [40]

    Yang Q, Fan Q, Shen Z, Xia Y, Tian W, Chen K 2018 J. Chem. Phys. 148 214904Google Scholar

    [41]

    Zhong W R, Xiong J W, Ai B Q 2018 J. Chem. Phys. 149 174906Google Scholar

    [42]

    Zhu W J, Huang X Q, Ai B Q 2018 Chin. Phys. B 27 080504Google Scholar

    [43]

    仲颖, 施夏清 2020 物理学报 69 080507Google Scholar

    Zhong Y, Shi X Q 2020 Acta Phys. Sin. 69 080507Google Scholar

    [44]

    Tian W D, Gu Y, Guo Y K, Chen K 2017 Chin. Phys. B 26 100502Google Scholar

    [45]

    Ai B Q, Li J J, Li Z Q, Xiong J W 2019 J. Chem. Phys 150 184905Google Scholar

    [46]

    Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659Google Scholar

  • 图 1  (a)手征活性粒子驱动圆环运动的模型. 手征活性粒子驱动包裹它们的圆环在二维周期通道中运动, 通道$ x $方向为周期边界, $ y $方向为受限边界且满足温差条件. 设置$ y=0 $处温度为$ T_0 $, $ y=L_y $处温度为$T_0+\text{δ} T$. $ y $方向的温度梯度可由方程(1)描述. (b)逆时针旋转粒子(counterclockwise, CCW)漂移方向. 当$ t_1>t_2 $时, 粒子往右边运动; 当$ t_1<t_2 $时, 粒子往左边运动

    Figure 1.  (a) Sketch of a ring containing chiral active particles moving in a two-dimensional periodic channel. Periodic boundary conditions are imposed in the x-direction, and hard wall boundaries with temperature difference are imposed in the y-direction. The temperature is set to $ T_0 $ at $ y=0 $ and $T_0+\text{δ} T$ at $ y=L_y $. The temperature gradient in the y-direction is described by Eq. (1). (b) Sketch of the drift directions for counterclockwise (CCW) particles. The particles on average move to the right for $ t_1>t_2 $ and the left for $ t_1<t_2 $

    图 2  平均速度$ V_c $随角速度$|\varOmega|$的变化 (a)在不同手征活性粒子数$ n $下, $ R=3.0 $$ \Delta T=5.0 $; (b)在不同圆环半径$ R $下, $ n=1 $$ \Delta T=5.0 $; (c)在不同圆环半径$ R $下, $ n=4 $$ \Delta T=5.0 $; (d)在不同$ \Delta T $下, $ n=4 $$ R=6.0 $. 其他参数为$ v_0=2.0 $$ T_0=0.001 $

    Figure 2.  Average velocity $ V_c $ as a function of the angular velocity $|\varOmega|$: (a) For different particle number of chiral active particles $ n $ at $ R=3.0 $ and $ \Delta T=5.0 $; (b) for different values of the ring radius $ R $ at $ n=1 $ and $ \Delta T=5.0 $; (c) for different values of the ring radius $ R $ at $ n=4 $ and $ \Delta T=5.0 $; (d) for different values of temperature difference $ \Delta T $ at $ n=4 $ and $ R=6.0 $. The other parameters are $ v_0=2.0 $ and $ T_0=0.001 $

    图 3  平均速度$ V_c $随下通道壁温度$ T_0 $的变化 (a)在不同手征活性粒子数$ n $下, $ R=3.0 $; (b)在不同圆环半径$ R $下, $ n=1 $; (c)在不同圆环半径$ R $下, $ n=4 $. 其他参数为$ v_0=2.0 $, $ \Delta T=10.0 $$\varOmega=0.01$

    Figure 3.  Average velocity $ V_c $ vs. the temperature $ T_0 $ of the lower wall: (a) For different particle number of chiral active particles $ n $ at $ R=3.0 $; (b) for different values of the ring radius $ R $ at $ n=1 $; (c) for different values of the ring radius $ R $ at $ n=4 $. The other parameters are $ v_0=2.0 $, $ \Delta T=10.0 $ and $\varOmega=0.01$

    图 4  平均速度$ V_c $随温度差$ \Delta T $的变化 (a)在不同手征活性粒子数$ n $下, $ R=3.0 $; (b)在不同圆环半径$ R $下, $ n=1 $; (c)在不同圆环半径$ R $下, $ n=4 $. 其他参数为$ v_0=2.0 $, $ T_0=0.001 $$\varOmega=0.01$

    Figure 4.  Average velocity $ V_c $ vs. temperature difference $ \Delta T $: (a) For different values of chiral active particle number $ n $ at $ R=3.0 $; (b) for different values of the ring radius $ R $ at $ n=1 $; (c) for different values of the ring radius $ R $ at $ n=4 $. The other parameters are $ v_0=2.0 $, $ T_0=0.001 $ and $\varOmega=0.01$

    图 5  在不同角速度$\varOmega$下, 平均速度$ V_c $随圆环半径$ R $的变化 (a) $ n=1 $; (b) $ n=4 $. 其他参数为$ v_0=2.0 $, $ T_0=0.001 $$ \Delta T=20.0 $

    Figure 5.  Average velocity $ V_c $ vs. the ring radius $ R $ for different angular velocity $\varOmega$: (a) $ n=1 $; (b) $ n=4 $. The other parameters are $ v_0=2.0 $, $ T_0=0.001 $ and $ \Delta T=20.0 $

    图 6  在不同下通道壁温度$ T_0 $下, 平均速度$ V_c $随圆环半径$ R $的变化  (a) $ n=1 $; (b) $ n=4 $. 其他参数为$ v_0=2.0 $, $\varOmega=0.01$$ \Delta T=20.0 $

    Figure 6.  Average velocity $ V_c $ vs. the ring radius $ R $ for different temperature $ T_0 $ of the lower wall: (a) $ n=1 $; (b) $ n=4 $. The other parameters are $ v_0=2.0 $, $\varOmega=0.01$ and $ \Delta T=20.0 $

    图 7  在不同温度差$ \Delta T $下, 平均速度$ V_c $随圆环半径$ R $的变化 (a) $ n=1 $; (b) $ n=4 $. 其他参数为$ v_0=2.0 $, $ T_0=0.001 $$\varOmega=0.011$

    Figure 7.  Average velocity $ V_c $ vs. the ring radius $ R $ for different temperature difference $ \Delta T $: (a) $ n=1 $; (b) $ n=4 $. The other parameters are $ v_0=2.0 $, $ T_0=0.001 $ and $\varOmega=0.01$.

    图 8  在不同自驱动速度$ v_0 $下, 平均速度$ V_c $随圆环半径$ R $的变化 (a) $ n=1 $; (b) $ n=4 $. 其他参数为$ T_0=0.001 $, $\varOmega=0.01$$ \Delta T=20.0 $

    Figure 8.  Average velocity $ V_c $ vs. the ring radius $ R $ for different self-propelled velocity $ v_0 $: (a) $ n=1 $; (b) $ n=4 $. The other parameters are $ T_0=0.001 $, $\varOmega=0.01$ and $ \Delta T=20.0 $

    图 9  在不同手征活性粒子数$ n $下, 平均速度$ V_c $随圆环半径$ R $的变化. 其他参数为$ T_0=0.001 $, $\varOmega=0.01$$ \Delta T= $$ 20.0 $

    Figure 9.  Average velocity $ V_c $ vs. the ring radius $ R $ for different particle number of chiral active particles $ n $. The other parameters are $ T_0=0.001 $, $\varOmega=0.01$ and $ \Delta T=20.0 $

    图 10  平均速度$ V_c $随自驱动速度$ v_0 $的变化 (a)在不同手征活性粒子数$ n $下, $ R=3.0 $; (b)在不同圆环半径$ R $下, $ n=1 $; (c)在不同圆环半径$ R $下, $ n=4 $. 其他参数为$ \Delta T=10.0 $, $ T_0=0.001 $$\varOmega=0.01$

    Figure 10.  The average velocity $ V_c $ as a function of the self-propelled velocity $ v_0 $: (a) For different particle number of chiral active particles $ n $ at $ R=3.0 $; (b) for different values of the ring radius $ R $ at $ n=1 $; (c) for different values of the ring radius $ R $ at $ n=4 $. The other parameters are $ \Delta T=10.0 $, $ T_0=0.001 $ and $\varOmega=0.01$

    图 11  在不同圆环半径$ R $下, 平均速度$ V_c $随手征活性粒子数$ n $的变化. 其他参数取值为$ T_0=0.001 $, $\varOmega=0.01$$\Delta T= 10.0$

    Figure 11.  Average velocity $ V_c $ vs. particle number of chiral active particles $ n $ for different ring radius $ R $. The other parameters are $ T_0=0.001 $, $\varOmega=0.01$ and $ \Delta T=10.0 $

  • [1]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [2]

    Liebchen B, Levis D 2017 Phys. Rev. Lett. 119 058002Google Scholar

    [3]

    Levis D, Liebchen B 2018 J. Phys.: Condens. Matter 30 084001Google Scholar

    [4]

    Reichhardt C J O, Reichhardt C 2017 Nat. Phys. 13 10Google Scholar

    [5]

    Potiguar F Q, Farias G A, Ferreira W P 2014 Phys. Rev. E 90 012307Google Scholar

    [6]

    Lauga E, DiLuzio W R, Whitesides G M, Stone H A 2006 Biophys. J. 90 400Google Scholar

    [7]

    Loose M, Mitchison T J 2014 Nat. Cell Biol. 16 38Google Scholar

    [8]

    Nguyen N H P, Klotsa D, Engel M, Glotzer S C 2014 Phys. Rev. Lett. 112 075701Google Scholar

    [9]

    Scholz C, Engel M, Pöschel T 2018 Nat. Commun. 9 931Google Scholar

    [10]

    Scholz C, Jahanshahi S, Ldov A, Löwen H 2018 Nat. Commun. 9 5156Google Scholar

    [11]

    Lei Q, Ciamarra M P, Ni R 2019 Sci. Adv. 5 eaau7423Google Scholar

    [12]

    Liao G J, Klapp S H L 2018 Soft Matter 14 7873Google Scholar

    [13]

    Reichhardt C, Reichhardt C J O 2019 J. Chem. Phys. 150 064905Google Scholar

    [14]

    Metselaar L, Doostmohammadi A, Yeomans J M 2019 J. Chem. Phys. 150 064909Google Scholar

    [15]

    Ma F, Wang S, Wu D T, Wu N 2015 Proc. Natl. Acad. Sci. 112 6307Google Scholar

    [16]

    Ventejou B, Chaté H, Montagne R, Shi X 2021 Phys. Rev. Lett. 127 238001Google Scholar

    [17]

    Mijalkov M, Volpe G 2013 Soft Matter 9 6376Google Scholar

    [18]

    Ai B Q, Chen Q 2015 J. Chem. Phys. 143 104113Google Scholar

    [19]

    Ai B Q, He Y F, Zhong W R 2015 Soft Matter 11 3852Google Scholar

    [20]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101Google Scholar

    [21]

    Olson Reichhardt C J, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51Google Scholar

    [22]

    Liao J J, Huang X Q, Ai B Q 2018 J. Chem. Phys. 148 094902Google Scholar

    [23]

    Li Y, Ghosh P K, Marchesoni F, Li B 2014 Phys. Rev. E 90 062301Google Scholar

    [24]

    Geiseler A, Hänggi P, Marchesoni F, Mulhern C, Savel’ev S 2016 Phys. Rev. E 94 012613Google Scholar

    [25]

    Ghosh P K, Li Y, Marchesoni F, Nori F 2015 Phys. Rev. E 92 012114Google Scholar

    [26]

    Geiseler A, Hänggi P, Marchesoni F 2017 Sci. Rep. 7 41884Google Scholar

    [27]

    Galajda P, Keymer J, Chaikin P, Austin R 2007 J. Bacteriol. 189 8704Google Scholar

    [28]

    McDermott D, Reichhardt C J O, Reichhardt C 2016 Soft Matter 12 8606Google Scholar

    [29]

    Ghosh P K, Misko V R, Marchesoni F, Nori F 2013 Phys. Rev. Lett. 110 268301Google Scholar

    [30]

    Sandor C, Libal A, Reichhardt C, Reichhardt C J O 2017 Phys. Rev. E 95 012607Google Scholar

    [31]

    Reichhardt C, Reichhardt C J O 2018 Phys. Rev. E 97 052613Google Scholar

    [32]

    Reichhardt C, Reichhardt C J O 2017 J. Phys.: Condens. Matter 30 015404Google Scholar

    [33]

    Reichhardt C J O, Reichhardt C 2018 New J. Phys. 20 025002Google Scholar

    [34]

    Schakenraad K, Ravazzano L, Sarkar N, Wondergem J, Giomi 2020 Phys. Rev. E 101 032602Google Scholar

    [35]

    Kaiser A, Popowa K, Wensink H H, Löwen H 2013 Phys. Rev. E 88 022311Google Scholar

    [36]

    Kumar N, Gupta R K, Soni H, Ramaswamy S, Sood A K 2019 Phys. Rev. E 99 032605Google Scholar

    [37]

    Ribeiro H E, Ferreira W P, Potiguar F Q 2020 Phys. Rev. E 101 032126Google Scholar

    [38]

    Borba A D, Domingos J L, Moraes E C B, Potiguar F Q, Ferreira W P 2020 Phys. Rev. E 101 022601Google Scholar

    [39]

    Yang Q, Zhu H, Liu P, Liu R, Shi Q, Chen K, Zheng N, Ye F, Yang M 2021 Phys. Rev. Lett. 126 198001Google Scholar

    [40]

    Yang Q, Fan Q, Shen Z, Xia Y, Tian W, Chen K 2018 J. Chem. Phys. 148 214904Google Scholar

    [41]

    Zhong W R, Xiong J W, Ai B Q 2018 J. Chem. Phys. 149 174906Google Scholar

    [42]

    Zhu W J, Huang X Q, Ai B Q 2018 Chin. Phys. B 27 080504Google Scholar

    [43]

    仲颖, 施夏清 2020 物理学报 69 080507Google Scholar

    Zhong Y, Shi X Q 2020 Acta Phys. Sin. 69 080507Google Scholar

    [44]

    Tian W D, Gu Y, Guo Y K, Chen K 2017 Chin. Phys. B 26 100502Google Scholar

    [45]

    Ai B Q, Li J J, Li Z Q, Xiong J W 2019 J. Chem. Phys 150 184905Google Scholar

    [46]

    Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659Google Scholar

  • [1] Bai Jing, Ma Wen-Hao, Ge Cheng-Xian, Wu Zhen-Sen, Xu Tong. Radiation force characteristics of non-uniform chiral stratified particles in standing wave field. Acta Physica Sinica, 2024, 73(18): 184201. doi: 10.7498/aps.73.20240842
    [2] Li Chen-Pu, Wu Wei-Xia, Zhang Li-Gang, Hu Jin-Jiang, Xie Ge-Ying, Zheng Zhi-Gang. Separation of active chiral particles with different diffusion coefficients. Acta Physica Sinica, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [3] Huang Li-Sheng, Luo Rong-Xiang. Negative differential thermal resistance in a two-dimensional gas model. Acta Physica Sinica, 2023, 72(1): 010501. doi: 10.7498/aps.72.20221498
    [4] Zou Yun-Peng, Chan Vincent, Chen Wei. Improvement of critical gradient model and establishment of an energetic particle module for integrated simulation. Acta Physica Sinica, 2023, 72(21): 215206. doi: 10.7498/aps.72.20230681
    [5] Bai Jing, Ge Cheng-Xian, He Lang, Liu Xuan, Wu Zhen-Sen. Analysis of trapping force exerted on multi-layered chiral sphere induced by laser sheet. Acta Physica Sinica, 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [6] Liao Jing-Jing, Lin Fu-Jun. Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback. Acta Physica Sinica, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [7] Li Wei-Qin, Huo Zhi-Sheng, Pu Hong-Bin. Transient characteristics of electron beam induced current in dielectric and semiconductor sample. Acta Physica Sinica, 2020, 69(6): 060201. doi: 10.7498/aps.69.20191543
    [8] Liu Chen-Hao, Liu Tian-Yu, Huang Ren-Zhong, Gao Tian-Fu, Shu Yao-Gen. Transport performance of coupled Brownian particles in rough ratchet. Acta Physica Sinica, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [9] Huo Zhi-Sheng, Pu Hong-Bin, Li Wei-Qin. Charging effect of polymer thin film under irradiation of high-energy transmission electron beam. Acta Physica Sinica, 2019, 68(23): 230201. doi: 10.7498/aps.68.20191112
    [10] Yu Xiao-Yang, Feng Hong-Lei, Gu Gang-Xu, Liu Yong-He, Li Zhi-Lin, Xu Tong-Shuai, Li Yong-Qing. Andreev reflection spectroscopy of ferromagnetic Fe0.26TaS2 with layered structure. Acta Physica Sinica, 2019, 68(24): 247201. doi: 10.7498/aps.68.20191221
    [11] Zhang Ting-Ting, Cheng Meng, Yang Rong, Zhang Guang-Yu. Fabrication of zigzag-edged graphene antidot lattice and its transport properties. Acta Physica Sinica, 2017, 66(21): 216103. doi: 10.7498/aps.66.216103
    [12] Li Shu, Deng Li, Tian Dong-Feng, Li Gang. A new sampling method based on radiation energy density for location of radiative source particles. Acta Physica Sinica, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [13] Shi Hong-Yun, Chen He-Sheng. Single electron transport in a cavity containing a two-level atom. Acta Physica Sinica, 2012, 61(2): 020301. doi: 10.7498/aps.61.020301
    [14] Chen Wen-Qin, Hai Wen-Hua, Li Hui, Ma Zhi-Ying. Regular and chaotic motions of a single trapped ion interacting with a flashing ratchet potential. Acta Physica Sinica, 2007, 56(3): 1305-1312. doi: 10.7498/aps.56.1305
    [15] He Meng-Dong, Gong Zhi-Qiang. Acoustic-phonon transmission in multilayer heterojunctions. Acta Physica Sinica, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [16] Wang Guang-Chang, Zheng Zhi-Jian, Gu Yu-Qiu, Chen Tao, Zhang Ting. Study of transport of hot electrons in solid targets using transition radiation. Acta Physica Sinica, 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [17] Wang Ben-Yang, Qian Zheng-Nan, Sui Yu, Liu Yu-Qiang, Su Wen-Hui, Zhang Ming, Liu Zhu-Hong, Liu Guo-Dong, Wu Guang-Heng. Magnetism and transport properties of Heuser alloy Cu2VAl. Acta Physica Sinica, 2005, 54(7): 3386-3390. doi: 10.7498/aps.54.3386
    [18] WANG DE-ZHEN, MA TENG-CAI. THEORETICAL MODEL FOR THE HEAVY PARTICLE TRANSPORT IN A CATHODE SHEATH. Acta Physica Sinica, 2000, 49(12): 2404-2407. doi: 10.7498/aps.49.2404
    [19] FU XIN-YU, DONG JIA-QI, YING CHUN-TONG, LIU GUANG-JUN. PARTICLE TRANSPORT FROM TURBULENCE DRIVEN BY-PARALLEL VELOCITY SHEAR. Acta Physica Sinica, 1997, 46(3): 474-480. doi: 10.7498/aps.46.474
    [20] LIU MEI, LIU WEI, CAO SHU, XING DIN-YU. HOT ELECTRON THERMOELECTRIC POWER UNDER A MICROWAVE FIELD. Acta Physica Sinica, 1995, 44(12): 1977-1983. doi: 10.7498/aps.44.1977
Metrics
  • Abstract views:  3438
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2022
  • Accepted Date:  24 November 2022
  • Available Online:  28 November 2022
  • Published Online:  05 February 2023

/

返回文章
返回