Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of resonant magnetic perturbation on sawtooth behavior in experimental advanced superconducting Tokamak

Pan Shan-Shan Duan Yan-Min Xu Li-Qing Chao Yan Zhong Guo-Qiang Sun You-Wen Sheng Hui Liu Hai-Qing Chu Yu-Qi Lü Bo Jin Yi-Fei Hu Li-Qun

Citation:

Influence of resonant magnetic perturbation on sawtooth behavior in experimental advanced superconducting Tokamak

Pan Shan-Shan, Duan Yan-Min, Xu Li-Qing, Chao Yan, Zhong Guo-Qiang, Sun You-Wen, Sheng Hui, Liu Hai-Qing, Chu Yu-Qi, Lü Bo, Jin Yi-Fei, Hu Li-Qun
PDF
HTML
Get Citation
  • Sawtooth oscillation is one of the most important magneto-hydrodynamic (MHD) instabilities in Tokamak plasma, which can result in the periodic relaxation of the temperature and density of the core plasma when the safety factor on the magnetic axis (q0) is lower than unity. Owing to the periodic relaxation of the plasma core parameters, sawtooth oscillations are beneficial to avoiding impurity accumulation in plasma core. However, the large sawtooth crash may trigger off other MHD instabilities, like tearing modes (TMs) or neoclassical tearing modes (NTMs), which is a matter of concern for the plasma stability. Therefore, it is essential to control sawtooth oscillations for ensuring safe operation in the future Tokamaks such as ITER. The resonant magnetic perturbation (RMP) is widely used to control edge-localized modes (ELMs) and divertor heat flux in Tokamak. The application of RMP has also been found to affect the sawtooth behaviors. This paper studies the influence of RMP coils at n = 2 on sawtooth behaviors in experimental advanced superconducting Tokamak (EAST), where n is the toroidal mode number of the applied RMP. It is found that the phase difference between upper RMP coil and lower RMP coil ($ \Delta {\phi }_{{\rm{U}}{\rm{L}}}\left(^\circ\right)={\phi }_{{\rm{U}}}\left(^\circ\right)-{\phi }_{{\rm{L}}}\left(^\circ\right) $) is a notable parameter of affecting sawtooth behavior. The experiments for scanning the phase difference $ \Delta {\phi }_{{\rm{U}}{\rm{L}}} $ are carried out. When the phase difference $ \Delta {\phi }_{{\rm{U}}{\rm{L}}} $ of RMP at n = 2 is changed, the sawtooth period and amplitude become subsequently different. The minimum sawtooth period and amplitude appear at $\Delta {\phi }_{{\rm{U}}{\rm{L}}}=270^\circ$. At the same time, neutron yields measured by neutron diagnostic system have the same trend as sawtooth behavior during RMP phase difference scanning. The plasma response to RMP at n = 2 is analyzed by using the MARS-F code. The results show that the plasma responses much strongly at the $\Delta {\phi }_{{\rm{U}}{\rm{L}}}=270^\circ$. The loss of fast ion, caused by RMP coils, is possibly stronger at the $\Delta {\phi }_{{\rm{U}}{\rm{L}}}=270^\circ$ than that at other phase difference $ \Delta {\phi }_{{\rm{U}}{\rm{L}}}. $ The loss of fast ion can reduces its stabilization effect on sawtooth behavior, which results in the reduction of the sawtooth period and amplitude. Further research is needed to optimize the sawtooth control method with RMP to make it compatible with plasma performance.
      Corresponding author: Duan Yan-Min, ymduan@ipp.ac.cn
    • Funds: Project supported by the National MCF Energy R&D Program of China (Grant Nos. 2022YFE03040003, 2022YFE03010003) and the National Natural Science Foundation of China (Grant No. 11975273).
    [1]

    Porcelli F, Boucher D, Rosenbluth M N 1996 Plasma Phys. Controlled Fusion 38 2163Google Scholar

    [2]

    Goniche M, Dumont R J, Bobkov V, et al. 2017 Plasma Phys. Controlled Fusion 59 055001Google Scholar

    [3]

    Bando T, Wakatsuki T, Honda M, Isayama A, Shinohara K, Inoue S, Yoshida M, Matsunaga G, Takechi M, Oyama N, Ide S 2021 Plasma Phys. Controlled Fusion 63 085009Google Scholar

    [4]

    Wang J Q, Xiao C J, Wang X G, Ji X Q, Liu Y 2012 Plasma Phys. Controlled Fusion 54 122001Google Scholar

    [5]

    Chao Y, Xu L Q, Hu L Q, Yuan Y, Zhang Y K, Lü B, Zhong G Q, Liu Y, Liu H Q, Du H F 2019 AIP Adv. 9 015226Google Scholar

    [6]

    Li J C, Gong X Y, Dong J Q, Wang J, Yin L 2016 Chin. Phys. B 25 045201Google Scholar

    [7]

    Lerche E, Lennholm M, Carvalho I S, Jacquet P, Mantsinen M, Dumortier P, Van Eester D, Graves J P, Card P, Noble C 2020 Nucl. Fusion 60 126037Google Scholar

    [8]

    Sun Y W, Ma Q, Jia M N, et al. 2021 Nucl. Fusion 61 106037Google Scholar

    [9]

    Bonfiglio D, Veranda M, Cappello S, Chacón L, Escande D F 2017 Plasma Phys. Controlled Fusion 59 014032Google Scholar

    [10]

    Li J C, Ding Y H, Yu Q Q, Wang N C, Li D, Zhang X Q, Han D L, Chen Z P, Yang Z J, Zhou S, Yan W, Liang Y F, Zhang X L, Lin X D, Sun H B, Gao X, Li J G 2020 Nucl. Fusion 60 126002Google Scholar

    [11]

    Kim G, Yun G S, Woo M 2019 Plasma Phys. Controlled Fusion 61 055001Google Scholar

    [12]

    Yuan Y, Hu L Q, Xu L Q, Wang X G, Wang X J, Xu H D, Luo Z P, Chen K Y, Lin S Y, Duan Y M, Chang P X, Zhao H L, He K Y, Liang Y F 2016 Phys. Plasmas 23 062503Google Scholar

    [13]

    Sun Y W, Liang Y, Qian J P, Shen B, Wan B 2015 Plasma Phys. Controlled Fusion 57 045003Google Scholar

    [14]

    Mao F Y, Wang N C, Huang Z, Ren Z K, Zhou S, Shen C S, Zhang X Y, He Y, Zhang Q, Jia R, Zhao C X, Li Y B, Hu B, Li D, Bala A A, Chen Z P, Chen Z Y, Yang Z J, Liang Y F, Ding Y H, Pan Y 2022 Plasma Sci. Technol. 24 124002Google Scholar

    [15]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [16]

    Qian J P, Lao L L, Liu H Q, Ding W X, Zeng L, Luo Z P, Ren Q L, Huang Y, Huang J, Brower D L, Hanada K, Chen D L, Sun Y W, Shen B, Gong X Z, Xiao B J, Wan B N 2017 Nucl. Fusion 57 036008Google Scholar

    [17]

    Liu H Q, Qian J P, Jie Y X, Ding W X, Brower D L, Zou Z Y, Li W M, Lian H, Wang S X, Yang Y, Zeng L, Lan T, Yao Y, Hu L Q, Zhang X D, Wan B N 2016 Rev. Sci. Instrum. 87 11D903Google Scholar

    [18]

    Zhong G Q, Cao H R, Hu L Q, Zhou R J, Xiao M, Li K, Pu N, Huang J, Liu G Z, Lin S Y, Lyu B, Liu H Q, Zhang X J 2016 Plasma Phys. Controlled Fusion 58 075013Google Scholar

    [19]

    Lyu B, Chen J, Hu R J, Delgado-Aparicio L F, Wang F D, Bitter M, Hill K W, Pablant N, Lee S G, Ye M Y, Shi Y J, Wan B N 2018 Rev. Sci. Instrum. 89 10F112Google Scholar

    [20]

    Zhong G Q, Hu L Q, Pu N, Zhou R J, Xiao M, Cao H R, Zhu Y B, Li K, Fan T S, Peng X Y, Du T F, Ge L J, Huang J, Xu G S, Wan B N 2016 Rev. Sci. Instrum. 87 11D820Google Scholar

    [21]

    Chapman I T, Pinches S D, Graves J P, et al. 2007 Plasma Phys. Controlled Fusion 49 B385Google Scholar

    [22]

    Chen W, Ding X T, Liu Y, Yang Q W, Ji X Q, Isobe M, Yuan G L, Zhang Y P, Zhou Y, Song X Y, Dong Y B, Li W, Zhou J, Lei G J, Cao J Y, Deng W, Song X M, Duan X R 2010 Nucl. Fusion. 50 084008Google Scholar

    [23]

    Ding Y H, Chen Z Y, Chen Z P, et al. 2018 Plasma Sci. Technol. 20 125101Google Scholar

    [24]

    苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建 2021 物理学报 70 095207Google Scholar

    Su C Y, Mou M L, Chen S Y, Guo W P, Tang C J 2021 Acta Phys. Sin. 70 095207Google Scholar

    [25]

    He K Y, Sun Y W, Wan B N, Gu S, Jia M N, Hu Y 2021 Nucl. Fusion 61 016009Google Scholar

    [26]

    Hao G Z, Li C Y, Liu Y Q, Chen H T, Wang S, Bai X, Dong G Q, He H D, Zhao Y F, Miao Y T, Zhou L N, Xu J Q, Zhang N, Chen Q, Sun T F, Ji X Q, Liu Y, Zhong W L, Xu M, Duan X R 2021 Nucl. Fusion 61 126031Google Scholar

    [27]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

    [28]

    Liu Y Q, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502Google Scholar

    [29]

    Ren J, Sun Y W, Wang H H, Gu S, Qian J P, Shi T H, Shen B, Liu Y Q, Guo W F, Chu N, He K Y, Jia M N, Wang Y, Sheng Z C, Luo Z P, Zeng L, Gong X Z, Liang Y F, Wan B N 2021 Nucl. Fusion. 61 056007Google Scholar

    [30]

    Jia M N, Loarte A, Sun Y W, et al. 2021 Nucl. Fusion. 61 106023Google Scholar

  • 图 1  EAST上软X射线诊断分布示意图

    Figure 1.  Poloidal layout of soft X-ray diagnostic system in EAST.

    图 2  EAST #116507炮放电中等离子体主要参数的演化 (a)中性束注入功率; (b) n = 2的RMP电流(蓝色)及其上下线圈相位差(红色); (c)锯齿周期(蓝色圆圈)和崩塌幅度(黑色三角); (d)芯部SXR辐射信号; (e)图(d)的局部放大图

    Figure 2.  Evolution of plasma parameters for EAST shot #116507: (a) NBI heating power; (b) n = 2 RMP coil current amplitude (blue) and the phase difference between the upper and lower coil $\Delta {\phi }_{{\rm{U}}{\rm{L}}}$ (red); (c) sawtooth period (blue circles) and amplitude (black triangles); (d) core SXR emission; (e) partial enlargement of panel (d).

    图 3  n = 2的RMP线圈不同相位差下的芯部SXR辐射信号 (a) #116507; (b) #116510; (c) #116505; (d) #116508

    Figure 3.  Core SXR emission of various phase difference of RMP at n = 2: (a) #116507; (b) #116510; (c) #116505; (d) #116508.

    图 4  EAST #116507炮的q分布

    Figure 4.  The q profiles of EAST #116507.

    图 5  EAST #116507炮放电中等离子体参数的演变 (a)芯部SXR辐射信号(蓝色)和RMP上下线圈相位差(红色); (b)锯齿周期(蓝色圆圈)和崩塌幅度(黑色三角); (c)中子产额; (d)等离子体芯部旋转速度

    Figure 5.  Evolution of plasma parameters of EAST shot #116507: (a) Core SXR emission (blue) and the phase difference between the upper and lower coil $\Delta {\phi }_{{\rm{U}}{\rm{L}}}$ of RMP at n = 2 (red); (b) sawtooth period (blue circles) and amplitude (black triangles); (c) neutron yield; (d) toroidal rotation velocity of plasma core.

    图 6  IRMP = 3.5 kA时, EAST 四炮等离子体参数的演变(a)等离子体电流; (b)中性束注入功率; (c)等离子体密度; (d) n = 2 的RMP上下线圈相位差; (e)中子产额

    Figure 6.  Evolution of plasma parameters of four shot with EAST at IRMP = 3.5 kA: (a) Plasma current; (b) NBI heating power; (c) electron density; (d) phase difference between the upper and lower coil $\Delta {\phi }_{{\rm{U}}{\rm{L}}}$ of RMP at n = 2; (e) neutron yield.

    图 7  (a), (c) EAST #116507炮放电芯部SXR辐射信号; (b), (d) 图(a), (c)对应时间段的SXR频谱图

    Figure 7.  (a), (c) Core SXR signal of discharge #116507; (b), (d) spectrum of SXR for the time corresponding to panels (a) and (c).

    图 8  EAST #116507炮放电中n = 2的扰动场在不同相位差下的谱型对比 (a)$\Delta {\phi }_{{\rm{U}}{\rm{L}}}=0^\circ$; (b)$\Delta {\phi }_{{\rm{U}}{\rm{L}}}=180^\circ$; (c)$\Delta {\phi }_{{\rm{U}}{\rm{L}}}= 270^\circ$

    Figure 8.  Comparison of n = 2 RMP spectrum for different phase difference of discharge #116507: (a) $\Delta {\phi }_{{\rm{U}}{\rm{L}}}=0^\circ$; (b) $\Delta {\phi }_{{\rm{U}}{\rm{L}}}= $$ 180^\circ$; (c) ${\Delta }{\phi }_{{\rm{U}}{\rm{L}}}=270^\circ$.

  • [1]

    Porcelli F, Boucher D, Rosenbluth M N 1996 Plasma Phys. Controlled Fusion 38 2163Google Scholar

    [2]

    Goniche M, Dumont R J, Bobkov V, et al. 2017 Plasma Phys. Controlled Fusion 59 055001Google Scholar

    [3]

    Bando T, Wakatsuki T, Honda M, Isayama A, Shinohara K, Inoue S, Yoshida M, Matsunaga G, Takechi M, Oyama N, Ide S 2021 Plasma Phys. Controlled Fusion 63 085009Google Scholar

    [4]

    Wang J Q, Xiao C J, Wang X G, Ji X Q, Liu Y 2012 Plasma Phys. Controlled Fusion 54 122001Google Scholar

    [5]

    Chao Y, Xu L Q, Hu L Q, Yuan Y, Zhang Y K, Lü B, Zhong G Q, Liu Y, Liu H Q, Du H F 2019 AIP Adv. 9 015226Google Scholar

    [6]

    Li J C, Gong X Y, Dong J Q, Wang J, Yin L 2016 Chin. Phys. B 25 045201Google Scholar

    [7]

    Lerche E, Lennholm M, Carvalho I S, Jacquet P, Mantsinen M, Dumortier P, Van Eester D, Graves J P, Card P, Noble C 2020 Nucl. Fusion 60 126037Google Scholar

    [8]

    Sun Y W, Ma Q, Jia M N, et al. 2021 Nucl. Fusion 61 106037Google Scholar

    [9]

    Bonfiglio D, Veranda M, Cappello S, Chacón L, Escande D F 2017 Plasma Phys. Controlled Fusion 59 014032Google Scholar

    [10]

    Li J C, Ding Y H, Yu Q Q, Wang N C, Li D, Zhang X Q, Han D L, Chen Z P, Yang Z J, Zhou S, Yan W, Liang Y F, Zhang X L, Lin X D, Sun H B, Gao X, Li J G 2020 Nucl. Fusion 60 126002Google Scholar

    [11]

    Kim G, Yun G S, Woo M 2019 Plasma Phys. Controlled Fusion 61 055001Google Scholar

    [12]

    Yuan Y, Hu L Q, Xu L Q, Wang X G, Wang X J, Xu H D, Luo Z P, Chen K Y, Lin S Y, Duan Y M, Chang P X, Zhao H L, He K Y, Liang Y F 2016 Phys. Plasmas 23 062503Google Scholar

    [13]

    Sun Y W, Liang Y, Qian J P, Shen B, Wan B 2015 Plasma Phys. Controlled Fusion 57 045003Google Scholar

    [14]

    Mao F Y, Wang N C, Huang Z, Ren Z K, Zhou S, Shen C S, Zhang X Y, He Y, Zhang Q, Jia R, Zhao C X, Li Y B, Hu B, Li D, Bala A A, Chen Z P, Chen Z Y, Yang Z J, Liang Y F, Ding Y H, Pan Y 2022 Plasma Sci. Technol. 24 124002Google Scholar

    [15]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [16]

    Qian J P, Lao L L, Liu H Q, Ding W X, Zeng L, Luo Z P, Ren Q L, Huang Y, Huang J, Brower D L, Hanada K, Chen D L, Sun Y W, Shen B, Gong X Z, Xiao B J, Wan B N 2017 Nucl. Fusion 57 036008Google Scholar

    [17]

    Liu H Q, Qian J P, Jie Y X, Ding W X, Brower D L, Zou Z Y, Li W M, Lian H, Wang S X, Yang Y, Zeng L, Lan T, Yao Y, Hu L Q, Zhang X D, Wan B N 2016 Rev. Sci. Instrum. 87 11D903Google Scholar

    [18]

    Zhong G Q, Cao H R, Hu L Q, Zhou R J, Xiao M, Li K, Pu N, Huang J, Liu G Z, Lin S Y, Lyu B, Liu H Q, Zhang X J 2016 Plasma Phys. Controlled Fusion 58 075013Google Scholar

    [19]

    Lyu B, Chen J, Hu R J, Delgado-Aparicio L F, Wang F D, Bitter M, Hill K W, Pablant N, Lee S G, Ye M Y, Shi Y J, Wan B N 2018 Rev. Sci. Instrum. 89 10F112Google Scholar

    [20]

    Zhong G Q, Hu L Q, Pu N, Zhou R J, Xiao M, Cao H R, Zhu Y B, Li K, Fan T S, Peng X Y, Du T F, Ge L J, Huang J, Xu G S, Wan B N 2016 Rev. Sci. Instrum. 87 11D820Google Scholar

    [21]

    Chapman I T, Pinches S D, Graves J P, et al. 2007 Plasma Phys. Controlled Fusion 49 B385Google Scholar

    [22]

    Chen W, Ding X T, Liu Y, Yang Q W, Ji X Q, Isobe M, Yuan G L, Zhang Y P, Zhou Y, Song X Y, Dong Y B, Li W, Zhou J, Lei G J, Cao J Y, Deng W, Song X M, Duan X R 2010 Nucl. Fusion. 50 084008Google Scholar

    [23]

    Ding Y H, Chen Z Y, Chen Z P, et al. 2018 Plasma Sci. Technol. 20 125101Google Scholar

    [24]

    苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建 2021 物理学报 70 095207Google Scholar

    Su C Y, Mou M L, Chen S Y, Guo W P, Tang C J 2021 Acta Phys. Sin. 70 095207Google Scholar

    [25]

    He K Y, Sun Y W, Wan B N, Gu S, Jia M N, Hu Y 2021 Nucl. Fusion 61 016009Google Scholar

    [26]

    Hao G Z, Li C Y, Liu Y Q, Chen H T, Wang S, Bai X, Dong G Q, He H D, Zhao Y F, Miao Y T, Zhou L N, Xu J Q, Zhang N, Chen Q, Sun T F, Ji X Q, Liu Y, Zhong W L, Xu M, Duan X R 2021 Nucl. Fusion 61 126031Google Scholar

    [27]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

    [28]

    Liu Y Q, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502Google Scholar

    [29]

    Ren J, Sun Y W, Wang H H, Gu S, Qian J P, Shi T H, Shen B, Liu Y Q, Guo W F, Chu N, He K Y, Jia M N, Wang Y, Sheng Z C, Luo Z P, Zeng L, Gong X Z, Liang Y F, Wan B N 2021 Nucl. Fusion. 61 056007Google Scholar

    [30]

    Jia M N, Loarte A, Sun Y W, et al. 2021 Nucl. Fusion. 61 106023Google Scholar

  • [1] Jin YiFei, Zhang HongMing, Yin XiangHui, Lyu Bo, Cheonho Bae, Ye KaiXuan, Sheng Hui, Wang ShiFan, Zhao HaiLin, GU Shuai, Yuan Hong, Lin ZiChao, Fu ShengYu, Lu DiAn, Fu Jia, Wang FuDi. Experimental investigations on mechanisms of RMP-induced intrinsic rotations at EAST. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241357
    [2] Ma Rui-Rui, Chen Liu, Qiu Zhi-Yong. Theoretical studies of low-frequency shear Alfvén waves in reversed shear tokamak plasmas. Acta Physica Sinica, 2023, 72(21): 215207. doi: 10.7498/aps.72.20230255
    [3] Zhou Li-Na, Hu Han-Qing, Liu Yue-Qiang, Duan Ping, Chen Long, Zhang Han-Yu. Modelling study of fluid and kinetic responses of plasmas to resonant magnetic perturbation. Acta Physica Sinica, 2023, 72(7): 075202. doi: 10.7498/aps.72.20222196
    [4] Li Chun-Yu, Hao Guang-Zhou, Liu Yue-Qiang, Wang Lian, Liu Yi-Hui-Zi. Influence of toroidal rotation on plasma response to external RMP fields in tokamak. Acta Physica Sinica, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [5] Shen Yong, Dong Jia-Qi, He Hong-Da, Ding Xuan-Tong, Shi Zhong-Bing, Ji Xiao-Quan, Li Jia, Han Ming-Kun, Wu Na, Jiang Min, Wang Shuo, Li Ji-Quan, Xu Min, Duan Xu-Ru. Hollow current and reversed magnetic shear configurations in pellet injection discharges on Huanliuqi 2A tokamak. Acta Physica Sinica, 2021, 70(18): 185201. doi: 10.7498/aps.70.20210641
    [6] Su Chun-Yan, Mou Mao-Lin, Chen Shao-Yong, Guo Wen-Ping, Tang Chang-Jian. Field amplification effect of resonant magnetic perturbation on ion orbits in tokamak plasma. Acta Physica Sinica, 2021, 70(9): 095207. doi: 10.7498/aps.70.20201860
    [7] Chen Xie-Yu, Mou Mao-Lin, Su Chun-Yan, Chen Shao-Yong, Tang Chang-Jian. Effect of toroidal rotation on plasma response to resonant magnetic perturbations in HL-2A. Acta Physica Sinica, 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [8] Zheng Yong-Zhen, Qi Chang-Wei, Ding Xuan-Tong, Lee Wen-Zhong. Internal magnetic fluctuation in the HL-1M tokamak. Acta Physica Sinica, 2006, 55(1): 294-298. doi: 10.7498/aps.55.294
    [9] WANG WEN-HAO, YU CHANG-XUAN, XU YU-HONG, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. MEASUREMENT OF EDGE PLASMA PARAMETERS AND THEIR ELECTROSTATIC FLUCTUATIONS ON THE HT-7 SUPERCONDUCTING TOKAMAK. Acta Physica Sinica, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [10] WANG SHI-QING, JIN YA-QIU. NUMERICAL ANALYSIS OF SAWTOOTH OSCILLATION DURING ELECTRON CYCLOTRON HEATING PHASES. Acta Physica Sinica, 2001, 50(9): 1737-1741. doi: 10.7498/aps.50.1737
    [11] LIU SHENG-XIA. . Acta Physica Sinica, 1995, 44(1): 152-156. doi: 10.7498/aps.44.152
    [12] Shen Xue-Min, Wang Zhao-Zhong, Shao Yu-Gui, Xue Di-Ye, Ding Jia-Yi, Xu De-Zheng, Deng Xu, Wang Jian, Wang Ya-Ming, Li You-Yi. . Acta Physica Sinica, 1995, 44(9): 1442-1448. doi: 10.7498/aps.44.1442
    [13] KUANG GUANG-LI, G.WAIDMANN. THE PROPERTIES OF THE MHD OSCILLATIONS IN TEXTOR TOKAMAK PLASMAS. Acta Physica Sinica, 1994, 43(9): 1466-1475. doi: 10.7498/aps.43.1466
    [14] MAO WEN-JIN. INFLUENCE OF RESONANT HELICAL FIELD ON TEARING MODE IN TOKAMAK. Acta Physica Sinica, 1993, 42(7): 1092-1097. doi: 10.7498/aps.42.1092
    [15] YANG XUAN-ZONG, QI XIA-ZHI, WANG LONG. STUDY ON HEAT TRANSPORT IN TOKAMAK PLASMA FROM SOFT X-RAY SAWTOOTH OSCILLATION. Acta Physica Sinica, 1987, 36(6): 717-724. doi: 10.7498/aps.36.717
    [16] Shen Zhong-qing, Zheng Shao-bai, WANG LONG. STABLE REGION OF TOKAMAK DEVICE FEEDBACK CONTROL (Ⅱ)——EXPBEIMENTAL. Acta Physica Sinica, 1986, 35(9): 1126-1133. doi: 10.7498/aps.35.1126
    [17] Chen Yan-ping, Ke Fu-jiu, Cai Shi-dong. ELECTRON CYCLOTRON RESONANCE HEATING METHOD FOR CREATING ENERGETIC ELECTRONS IN HIGH β TOKAMAK. Acta Physica Sinica, 1986, 35(10): 1271-1280. doi: 10.7498/aps.35.1271
    [18] Wang Mao-quan, Zhan Ru-juan. SUPPRESSING THE TEARING MODES IN TOKAMAK BY ELECTRON CYCLOTRON RESONANCE HEATING. Acta Physica Sinica, 1986, 35(9): 1233-1237. doi: 10.7498/aps.35.1233
    [19] QI XIA-ZHI, ZHENG SHAO-BAI. SOFT X-RAY EMISSION AND ITS FLUCTUATION IN CT-6B TOKAMAK. Acta Physica Sinica, 1984, 33(4): 465-471. doi: 10.7498/aps.33.465
    [20] CT-6 TOKAMAK RESEARCH (Ⅱ)——EXPERIMENTAL RESULTS. Acta Physica Sinica, 1980, 29(6): 764-777. doi: 10.7498/aps.29.764
Metrics
  • Abstract views:  3422
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2023
  • Accepted Date:  04 May 2023
  • Available Online:  05 May 2023
  • Published Online:  05 July 2023

/

返回文章
返回