Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on macroscopic thermodynamic properties of NO+ ion system

Hu Min-Li Fang Fan Fan Qun-Chao Fan Zhi-Xiang Li Hui-Dong Fu Jia Xie Feng

Citation:

Theoretical study on macroscopic thermodynamic properties of NO+ ion system

Hu Min-Li, Fang Fan, Fan Qun-Chao, Fan Zhi-Xiang, Li Hui-Dong, Fu Jia, Xie Feng
PDF
HTML
Get Citation
  • NO+ is one of the most important ions in the atmospheric ionosphere and ionospheric phenomena such as auroras, and is one of the most stable diatomic cations existing in interstellar clouds. It is crucial to understand the thermodynamic properties of NO+ ion for exploring the composition of interstellar gas. To obtain macroscopic thermodynamic properties of diatomic molecules and ions, a practical theoretical method is to determine the partition function associated with a potential model. This approach can be used to calculate various thermodynamic properties of the system based on the microscopic information.In this work, the improved Hulbert-Hirschfelder (IHH) based potential energy model is used to simulate the potential energy curve of NO+ in the ground electronic state. Then, the rovibrational energy levels for the ground electronic state of the NO+ are obtained by numerically solving the radial Schrödinger equation through using the LEVEL program for the IHH potential function. Finally, the total partition function and the thermodynamic properties such as the molar heat capacity, entropy, enthalpy and reduced molar Gibbs free energy of NO+ in a temperature range of 100–6000 K are calculated in the frame of the quantum statistical ensemble theory. The comparison indicates that the potential energy curve calculated based on IHH potential energy function is in better agreement with the experimental data. The root mean square error of IHH potential and experimental Rydberg-Klein-Rees (RKR) potential is 96.9 cm–1, the root mean square error of Hulbert-Hirschfelder (HH) potential is 112.7 cm–1, and the root mean square error of MRCI/aug-cc-pV6Z potential is 133 cm–1. And the macroscopic thermodynamic properties of NO+ predicted by IHH are closer to the experimental values, which shows that the IHH potential model is also applicable to the ion system.A feasible method is presented to obtain the thermodynamic properties of gaseous diatomic ions based on microscopic information by constructing reliable analytical potential energy function associated with quantum statistical ensemble theory.
      Corresponding author: Fan Qun-Chao, fanqunchao@mail.xhu.edu.cn ; Fan Zhi-Xiang, fanzhixiang@mail.xhu.edu.cn
    • Funds: Project supported by the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province (Grant No. 2021ZYD0050), the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC1857), the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (Grant No. ybxyjswl-zd-2020-006), and the National Undergraduate Innovation and Entrepreneurship Training Program of China (Grant No. S202210623057).
    [1]

    Petrou A L 2012 Chem. Geo. 308 50Google Scholar

    [2]

    Ding Q C, Jia C S, Liu J Z, Li J, Du R F, Liu J Y, Peng X L, Wang C W, Tang H X 2022 Chem. Phys. Lett. 803 139844Google Scholar

    [3]

    Peduzzi E, Boissonnet G, Maréchal F 2016 Fuel 181 207Google Scholar

    [4]

    汪志诚 2013 热力学·统计物理 (第五版) (北京: 高等教育出版社) 第 1 页

    Wang Z C 2013 Thermodynamic Statistical Physics (Vol. 5) (Beijing: Higher Education Press) p1 (in Chinese)

    [5]

    Kjelstrup S, Magnanelli E 2020 Trends Food Sci. Technol. 104 84Google Scholar

    [6]

    Horton T E 1970 The Computation of Partition Functions and Thermo-chemistry Data for Atomic, Ionic, Diatomic, and Polyatomic Species Technical Report 32-1425, National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (N-70 20647, NASA CR108970)

    [7]

    Bartl J, Bartlova M 1989 Contrib. Plasma Phys. 29 285Google Scholar

    [8]

    Peterson K A, Flowers B A, Francisco J S 2001 J. Chem. Phys. 115 7513Google Scholar

    [9]

    Capitelli M, Colonna G, Giordano D, Maraffa L, Casavola A, Minelli P, Pagano D, Pietanza L D, Taccogna F 2005 Tables of Internal Partition Functions and Thermodynamic Properties of High-Temperature Mars-Atmosphere Species from 50 K to 50000 K (Netherlands: European Space Agency Publications Division) p3

    [10]

    Maltsev M A, Kulikov A N, Morozov IV 2016 J. Phys. Conf. Ser. 774 012023Google Scholar

    [11]

    Qin Z, Zhao J M, Liu L H 2018 J. Quant. Spectrosc. Radiat. Transfer. 210 1Google Scholar

    [12]

    Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e202100036Google Scholar

    [13]

    Eyube E S, Notani P P, Dikko A B 2022 Eur. Phys. J. Plus. 137 329Google Scholar

    [14]

    Maltsev M A, Morozov I V, Osina E L 2019 High. Temp. 57 335Google Scholar

    [15]

    Maltsev M A, Morozov I V, Osina E L 2019 High Temp. 57 37Google Scholar

    [16]

    Maltsev M A, Morozov I V, Osina E L 2020 High Temp. 58 184Google Scholar

    [17]

    Maltsev M A, Aksenova S A, Morozov I V, Minenkov Y, Osina E L 2023 J. Comput. Chem. 44 1189Google Scholar

    [18]

    Tian H R, Fan Q C, Fan Z X, Fu J, Li H D, Ma J, Xie F 2022 Int. J. Quantum Chem. 122 e26983Google Scholar

    [19]

    Partridge H, Langhoff S R, Bauschlicher C W 1990 J. Chem. Phys. 93 7179Google Scholar

    [20]

    Cosby P C, Helm H 1981 J. Chem. Phys. 75 3882Google Scholar

    [21]

    Werner H J, Rosmus P 1982 J. Mol. Spectrosc. 96 362Google Scholar

    [22]

    Sheehan C H, Maurice J P S 2004 J. Geophys. Res. 109 A03302Google Scholar

    [23]

    Liu H, Liu L H, Wei L Q, Chu B X, Qin Z Z, Jin G Z, Tong Z F, Dong L H, Li B 2020 Fuel 272 117738Google Scholar

    [24]

    Smith D, Chippendale T W E, Španěl P 2014 Rapid Commun. Mass Spectrom. 28 1917Google Scholar

    [25]

    Dias M, Gurusinghe R M, Suits A G 2022 J. Phys. Chem. A. 126 5354Google Scholar

    [26]

    Chase M W 1998 Journal of Physical and Chemical Reference Data Monograph (Vol. 9) (New York: National Institute of Standards and Technology Gaithersburg) p1604

    [27]

    Dunham J L 1932 Phys. Rev. 41 721Google Scholar

    [28]

    Ilieva T, Iliev I 2016 J. Mol. Spectrosc. 330 28Google Scholar

    [29]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer. 186 167Google Scholar

    [30]

    Schwabl F 2006 Statistical Mechanics (2nd Ed.) (Berlin Heidelberg: Springer-Verlag) p409

    [31]

    Huber K P, Herzberg G 1950 Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p9

    [32]

    Gordillo-Vázquez F J, Kunc J A 1998 J. Appl. Phys. 84 4693Google Scholar

    [33]

    Holbrook R, Kaledin L, Kunc J A 1993 Phys. Rev. E 47 1285Google Scholar

    [34]

    Holbrook R, Kunc J A 1994 Phys. Plasmas. 1 1075Google Scholar

    [35]

    Zhang J P, Cheng X L, Zhang H, Yang X D 2011 Chinese Phys. B. 20 060401Google Scholar

    [36]

    Reddy R R, Nazeer Ahammed Y, Baba Basha D, Narasimhulu K, Siva Sankar Reddy L, Rama Gopal K 2006 J. Quant. Spectrosc. Radiat. Transfer. 97 344Google Scholar

    [37]

    Barklem P S, Collet R 2016 Astron. Astrophys. 588 A96Google Scholar

  • 图 1  NO+离子的势能曲线对比

    Figure 1.  Comparison of potential energy curves of NO+.

    图 2  NO+离子的内部配分函数与其他数据[37]结果对比(ARE为相对误差的绝对值)

    Figure 2.  Comparison of internal partition function of NO+ and other data[37] (ARE means the absolute relative errors).

    图 3  NO+离子摩尔热容与NIST实验数据[26]对比

    Figure 3.  Comparison of molar heat capacity of NO+ and NIST experimental data[26].

    图 4  NO+离子相对摩尔焓与NIST实验数据[26]对比

    Figure 4.  Comparison of the molar enthalpy increment of NO+ and NIST experimental data[26].

    图 5  NO+离子摩尔熵与NIST实验数据[26]对比

    Figure 5.  Comparison of the molar entropy of NO+ and NIST experimental data[26].

    图 6  NO+离子约化摩尔吉布斯自由能与NIST实验数据[26]对比

    Figure 6.  Comparison of the reduced molar Gibbs free energy of NO+ and NIST experimental data[26].

    表 1  NO+离子不同势能及其与RKR实验值[36]的误差值

    Table 1.  Different potential energy of NO+ ion and its absolute error with the experimental value of RKR[36].

    r$ {E_{{\text{RKR}}}} $/cm–1[36]$ {E_{{\text{IHH}}}} $/cm–1$\left| {\Delta {E_{ {\text{RKR–IHH} } } }} \right|$/cm–1$ {E_{{\text{HH}}}} $/cm–1$ \left| {\Delta {E_{{\text{RKR–HH}}}}} \right| $/cm–1$ {E_{{\text{MRCI}}}} $/cm–1[35]$ \left| {\Delta {E_{{\text{RKR–MRCI}}}}} \right| $/cm–1
    0.92616911.017037.5012716886.092517113.82203
    0.93414761.914825.646414721.534014833.4472
    0.94312580.212561.201912494.498612417.22163
    0.95310366.110382.871710342.772310343.4723
    0.9638119.408115.44148094.606258111.8388
    0.9775840.205839.58615830.84295833.2007
    0.9953528.503522.74163520.40783526.1132
    1.0221184.301161.440231161.306231142.91341
    1.1091184.301187.71231187.82641160.83523
    1.1473528.503505.745233507.331213502.36226
    1.1755840.205886.843475892.355525887.90948
    1.1998119.408269.8261508282.2201638289.580170
    1.21110366.110285.108110305.886010179.40187
    1.24112580.212581.93212615.363512503.0977
    1.26114761.914905.6214414955.4019414955.96194
    1.28016911.017187.3727617256.8334617219.91309
    RMSD96.9112.7133
    DownLoad: CSV

    表 2  HH, IHH势模型计算得到的NO+离子不同热力学性质的RMSD

    Table 2.  RMSD of HH and IHH potential models for different thermodynamic properties of NO+ ions.

    热力学量
    HHIHH
    $ {C_{\text{m}}} $/(J·mol–1·K–1)0.0539120.021733
    $ {S_{\text{m}}} $/(J·mol–1·K–1)

    0.0352330.022930
    $\Delta H$/(kJ·mol–1)
    0.0825030.034329
    $ {G_{\text{r}}} $/(J·mol–1·K–1)
    0.0210790.017711
    DownLoad: CSV
  • [1]

    Petrou A L 2012 Chem. Geo. 308 50Google Scholar

    [2]

    Ding Q C, Jia C S, Liu J Z, Li J, Du R F, Liu J Y, Peng X L, Wang C W, Tang H X 2022 Chem. Phys. Lett. 803 139844Google Scholar

    [3]

    Peduzzi E, Boissonnet G, Maréchal F 2016 Fuel 181 207Google Scholar

    [4]

    汪志诚 2013 热力学·统计物理 (第五版) (北京: 高等教育出版社) 第 1 页

    Wang Z C 2013 Thermodynamic Statistical Physics (Vol. 5) (Beijing: Higher Education Press) p1 (in Chinese)

    [5]

    Kjelstrup S, Magnanelli E 2020 Trends Food Sci. Technol. 104 84Google Scholar

    [6]

    Horton T E 1970 The Computation of Partition Functions and Thermo-chemistry Data for Atomic, Ionic, Diatomic, and Polyatomic Species Technical Report 32-1425, National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (N-70 20647, NASA CR108970)

    [7]

    Bartl J, Bartlova M 1989 Contrib. Plasma Phys. 29 285Google Scholar

    [8]

    Peterson K A, Flowers B A, Francisco J S 2001 J. Chem. Phys. 115 7513Google Scholar

    [9]

    Capitelli M, Colonna G, Giordano D, Maraffa L, Casavola A, Minelli P, Pagano D, Pietanza L D, Taccogna F 2005 Tables of Internal Partition Functions and Thermodynamic Properties of High-Temperature Mars-Atmosphere Species from 50 K to 50000 K (Netherlands: European Space Agency Publications Division) p3

    [10]

    Maltsev M A, Kulikov A N, Morozov IV 2016 J. Phys. Conf. Ser. 774 012023Google Scholar

    [11]

    Qin Z, Zhao J M, Liu L H 2018 J. Quant. Spectrosc. Radiat. Transfer. 210 1Google Scholar

    [12]

    Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e202100036Google Scholar

    [13]

    Eyube E S, Notani P P, Dikko A B 2022 Eur. Phys. J. Plus. 137 329Google Scholar

    [14]

    Maltsev M A, Morozov I V, Osina E L 2019 High. Temp. 57 335Google Scholar

    [15]

    Maltsev M A, Morozov I V, Osina E L 2019 High Temp. 57 37Google Scholar

    [16]

    Maltsev M A, Morozov I V, Osina E L 2020 High Temp. 58 184Google Scholar

    [17]

    Maltsev M A, Aksenova S A, Morozov I V, Minenkov Y, Osina E L 2023 J. Comput. Chem. 44 1189Google Scholar

    [18]

    Tian H R, Fan Q C, Fan Z X, Fu J, Li H D, Ma J, Xie F 2022 Int. J. Quantum Chem. 122 e26983Google Scholar

    [19]

    Partridge H, Langhoff S R, Bauschlicher C W 1990 J. Chem. Phys. 93 7179Google Scholar

    [20]

    Cosby P C, Helm H 1981 J. Chem. Phys. 75 3882Google Scholar

    [21]

    Werner H J, Rosmus P 1982 J. Mol. Spectrosc. 96 362Google Scholar

    [22]

    Sheehan C H, Maurice J P S 2004 J. Geophys. Res. 109 A03302Google Scholar

    [23]

    Liu H, Liu L H, Wei L Q, Chu B X, Qin Z Z, Jin G Z, Tong Z F, Dong L H, Li B 2020 Fuel 272 117738Google Scholar

    [24]

    Smith D, Chippendale T W E, Španěl P 2014 Rapid Commun. Mass Spectrom. 28 1917Google Scholar

    [25]

    Dias M, Gurusinghe R M, Suits A G 2022 J. Phys. Chem. A. 126 5354Google Scholar

    [26]

    Chase M W 1998 Journal of Physical and Chemical Reference Data Monograph (Vol. 9) (New York: National Institute of Standards and Technology Gaithersburg) p1604

    [27]

    Dunham J L 1932 Phys. Rev. 41 721Google Scholar

    [28]

    Ilieva T, Iliev I 2016 J. Mol. Spectrosc. 330 28Google Scholar

    [29]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer. 186 167Google Scholar

    [30]

    Schwabl F 2006 Statistical Mechanics (2nd Ed.) (Berlin Heidelberg: Springer-Verlag) p409

    [31]

    Huber K P, Herzberg G 1950 Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p9

    [32]

    Gordillo-Vázquez F J, Kunc J A 1998 J. Appl. Phys. 84 4693Google Scholar

    [33]

    Holbrook R, Kaledin L, Kunc J A 1993 Phys. Rev. E 47 1285Google Scholar

    [34]

    Holbrook R, Kunc J A 1994 Phys. Plasmas. 1 1075Google Scholar

    [35]

    Zhang J P, Cheng X L, Zhang H, Yang X D 2011 Chinese Phys. B. 20 060401Google Scholar

    [36]

    Reddy R R, Nazeer Ahammed Y, Baba Basha D, Narasimhulu K, Siva Sankar Reddy L, Rama Gopal K 2006 J. Quant. Spectrosc. Radiat. Transfer. 97 344Google Scholar

    [37]

    Barklem P S, Collet R 2016 Astron. Astrophys. 588 A96Google Scholar

  • [1] Fan Jun-Yu, Gao Nan, Wang Peng-Ju, Su Yan. Intermolecular interactions and thermodynamic properties of LLM-105. Acta Physica Sinica, 2024, 73(4): 046501. doi: 10.7498/aps.73.20231696
    [2] Zhu Cheng, Chen Xian-Hui, Wang Cheng, Song Ming, Xia Wei-Dong. Calculation of thermodynamic properties and transport coefficients of Ar-C-Si plasma. Acta Physica Sinica, 2023, 72(12): 125202. doi: 10.7498/aps.72.20222390
    [3] Jian Jun, Lei Jiao, Fan Qun-Chao, Fan Zhi-Xiang, Ma Jie, Fu Jia, Li Hui-Dong, Xu Yong-Gen. Theoretical study on thermodynamic properties of NO gas. Acta Physica Sinica, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [4] Zhao Yu-Na, Cong Hong-Lu, Cheng Shuang, Yu Na, Gao Tao, Ma Jun-Gang. First-principles study of lattice dynamical and thermodynamic properties of Li2NH. Acta Physica Sinica, 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [5] Deng Shi-Jie, Zhao Yu-Hong, Hou Hua, Wen Zhi-Qin, Han Pei-De. Structural, mechanical and thermodynamic properties of Ti2AlX (X= C, N) at high pressure. Acta Physica Sinica, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [6] Tang Wen-Hui, Xu Bin-Bin, Ran Xian-Wen, Xu Zhi-Hong. Equations of state and thermodynamic properties of hot plasma. Acta Physica Sinica, 2017, 66(3): 030505. doi: 10.7498/aps.66.030505
    [7] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [8] Men Fu-Dian, Wang Bing-Fu, He Xiao-Gang, Wei Qun-Mei. Thermodynamic properties of a weakly interacting Fermi gas in a strong magnetic field. Acta Physica Sinica, 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [9] Li Xiao-Feng, Liu Zhong-Li, Peng Wei-Min, Zhao A-Ke. Elastic and thermodynamic properties of CaPo under pressure via first-principles calculations. Acta Physica Sinica, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [10] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [11] Xu Bu-Yi, Chen Jun-Rong, Cai Jing, Li Quan, Zhao Ke-Qing. Theoretical study on the structure,spectra and thermodynamic property of 2-(toluene-4-sulfonylamino)-benzoic. Acta Physica Sinica, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [12] Chen Yi, Shen Jiang. Structural and thermodynamic properties of Fe based compounds with NaZn13-type. Acta Physica Sinica, 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [13] Liu Na-Na, Song Ren-Bo, Sun Han-Ying, Du Da-Wei. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [14] Li Quan, Zhu Zheng-He. The potential energy function and thermodynamic properties of AuZn and AuAl for the ground states and low-lying excited states. Acta Physica Sinica, 2008, 57(6): 3419-3424. doi: 10.7498/aps.57.3419
    [15] Song Hai-Feng, Liu Hai-Feng. Theoretical study of thermodynamic properties of metal Be. Acta Physica Sinica, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [16] Yuan Du-Qi. The influence of weak interaction on thermodynamic properties and the stability of imperfect Bose gas. Acta Physica Sinica, 2006, 55(4): 1634-1638. doi: 10.7498/aps.55.1634
    [17] Men Fu-Dian. Thermodynamic properties of a weakly interacting Fermi gas in weak magnetic field. Acta Physica Sinica, 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [18] Su Guo-Zhen, Chen Li-Xuan. Thermodynamic properties of a weakly interacting Fermi gas. Acta Physica Sinica, 2004, 53(4): 984-990. doi: 10.7498/aps.53.984
    [19] Zhu Zhi-Yan, Zhu Zheng-He, Gao Tao, Jiang Gang. Statistical thermodynamics for equilibrium distribution of Au48+—Au52+ in Au plasma. Acta Physica Sinica, 2004, 53(10): 3330-3335. doi: 10.7498/aps.53.3330
    [20] Zhang Ya-Nan, Yan Shi-Lei. Thermodynamic properties of random transverse mixed Ising spin system with cryst al field. Acta Physica Sinica, 2003, 52(11): 2890-2895. doi: 10.7498/aps.52.2890
Metrics
  • Abstract views:  3207
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2023
  • Accepted Date:  22 May 2023
  • Available Online:  14 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回