Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural design of dual carrier multiplication avalanche photodiodes on InP substrate

Zhao Hua-Liang Peng Hong-Ling Zhou Xu-Yan Zhang Jian-Xin Niu Bo-Wen Shang Xiao Wang Tian-Cai Cao Peng

Zhao Hua-Liang, Peng Hong-Ling, Zhou Xu-Yan, Zhang Jian-Xin, Niu Bo-Wen, Shang Xiao, Wang Tian-Cai, Cao Peng. Structural design of dual carrier multiplication avalanche photodiodes on InP substrate. Acta Phys. Sin., 2023, 72(19): 198502. doi: 10.7498/aps.72.20230885
Citation: Zhao Hua-Liang, Peng Hong-Ling, Zhou Xu-Yan, Zhang Jian-Xin, Niu Bo-Wen, Shang Xiao, Wang Tian-Cai, Cao Peng. Structural design of dual carrier multiplication avalanche photodiodes on InP substrate. Acta Phys. Sin., 2023, 72(19): 198502. doi: 10.7498/aps.72.20230885

Structural design of dual carrier multiplication avalanche photodiodes on InP substrate

Zhao Hua-Liang, Peng Hong-Ling, Zhou Xu-Yan, Zhang Jian-Xin, Niu Bo-Wen, Shang Xiao, Wang Tian-Cai, Cao Peng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Avalanche photodiodes are widely used in various fields, such as optical communication and laser radar, because of their high multiplication. In order to adapt to very weak signal detection applications, devices are required to have higher gain values. The existing avalanche photodiodes generally use single carrier multiplication mode of operation, its multiplication effect is limited. In this paper is designed an InP/In0.53Ga0.47As/In0.52Al0.48As avalanche photodiode structure with electrons and holes jointly involved in multiplication. In this structure, In0.53Ga0.47As material is used for the absorption layer, InP material is used for the hole multiplication layer, In0.52Al0.48As is used for the electron multiplication layer, and the two multiplication layers are distributed on the upper side and lower side of the absorber layer. Under the reverse bias, the photogenerated electrons and the absorber-layer generated holes can enter into the respective multiplier layers in different directions and create the avalanche multiplication effect, so that the carriers are fully utilized. This structure and the conventional single multiplication layer structure are simulated by Silvaco TCAD software. Comparing the single InP multiplication layer structure with the single In0.52Al0.48As multiplication layer structure, the gain value of the double multiplication layer structure at 95% breakdown voltage is about 2.3 times and about 2 times of the former two, respectively, and the device has a larger gain value because both carriers are involved in multiplication in both multiplication layers at the same time. The structure has a dark current of 1.5 nA at 95% breakdown voltage, which does not increase in comparison with the single multiplication layer structure, owing to the effective control of the electric field inside the structure by multiple charge layers. Therefore, this structure is expected to improve the detection sensitivity of the system.
      PACS:
      85.30.-z(Semiconductor devices)
      73.40.Lq(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
      85.60.Gz(Photodetectors (including infrared and CCD detectors))
      42.60.Lh(Efficiency, stability, gain, and other operational parameters)
      Corresponding author: Peng Hong-Ling, hlpeng@semi.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0200900).

    雪崩光电二极管(APD)目前已经广泛应用于商业、军事和科研领域, 推动了光通信、成像[13]和单光子探测[46]等技术的发展. APD结构主要经历了分离吸收和倍增(separate absorption and multiplication, SAM)结构[79]、分离吸收、渐变和倍增(separate absorption, grading and multiplication, SAGM)结构 [10,11]、分离吸收、渐变、电荷和倍增(separate absorption, grading, charge and multiplication, SAGCM)结构[1214]等几个阶段的演变, 其中SAGCM结构因其性能优越而成为当前使用最广泛的APD结构. 如果在一种倍增层材料中, 电子和空穴碰撞电离系数接近, 则会产生较大的过剩噪声[15,16], 因此为降低APD的噪声, 在一种倍增层材料中, 一般采用单种载流子倍增[17,18], 例如空穴注入型[19]结构通常采用InP等作为倍增层材料, 而电子注入型[20,21]结构通常采用In0.52Al0.48As等作为倍增层材料. 正因如此, 对于当前各种结构的APD, 在吸收层内产生的光生载流子只有其中一种进入倍增层发生雪崩倍增, 另外一种载流子则没有参与倍增.

    APD内部能够发生雪崩倍增效应, 可以提供更高的灵敏度[2224], 更适合于对微弱光信号的探测. 增益是表征APD对光电流放大作用的性能参数, 在电场强度一定的条件下, 增益的大小由材料的碰撞电离系数以及倍增层的厚度所决定[16,25,26], 其中增大倍增层厚度虽然可以提高增益, 但也会导致响应速度的下降以及过大的击穿电压. 因此, 目前提高APD增益的主要方式是优化制备工艺, 以及选择具有更佳碰撞电离系数的倍增材料[18,27,28], 而很少有通过改进结构来提高APD增益的报道. 2013年, Huang等[29]有效地利用了倍增层中的死区空间[30], 通过在此区域中交替生长不同载流子倍增纳米结构, 实现了在SAM结构基础上的双载流子倍增, 通过模拟对比, 显示出更薄的倍增纳米结构可以获得更高的增益, 且不会引起过剩噪声的明显增加. 因此, 如何在采用工艺成熟的材料前提下, 通过设计新的APD结构以获得大的倍增增益, 是值得去解决的问题.

    本文在传统SAGCM-APD的基础上进行改进, 设计了两种不同载流子都参与倍增的结构, 将两个倍增层分别置于吸收层上下两侧, 并通过电荷层来控制吸收层和两个倍增层内部的电场强度, 使得器件在一定的电场条件下, 光生电子和空穴分别进入各自的倍增层后同时发生倍增, 因此器件具有更大的增益值. 另外, 以工艺较为成熟的InGaAs/InP/InAlAs材料体系为例来介绍双倍增层结构, 根据入射波长等不同应用需求, 可以在此结构上使用其他材料体系.

    器件结构中以Si和Be分别作为n型和p型掺杂. 器件外延结构见图1. 在p+ InP(100)衬底上外延生长0.2 μm p+ InP缓冲层(8×1018 cm–3), 用来防止衬底杂质向外延层的扩散; 再依次外延生长0.3 μm p+ InP欧姆接触层(8×1018 cm–3)、0.4 μm n InP空穴倍增层(2×1015 cm–3)、0.06 μm n+ InP电荷层(3.4×1017 cm–3)、0.05 μm n InGaAsP渐变层(1×1015 cm–3)、0.8 μm非故意掺杂的In0.53Ga0.47As (下文称为InGaAs)吸收层、0.05 μm p InGaAsP渐变层(1×1015 cm–3)、0.08 μm p+ In0.52Al0.48As (下文为InAlAs)电荷层(3.6×1017 cm–3)、0.4 μm p InAlAs电子倍增层(2×1015 cm–3)、0.08 μm n+ InAlAs电荷层(2.4×1017 cm–3), 此处n+电荷层设计目的为增大电子倍增层的电场强度, 这是因为InAlAs材料具有比InP材料更高的碰撞电离阈值[1921]. 接着外延生长0.2 μm n+ InAlAs帽层(8×1018 cm–3)、0.05 μm n+ InGaAs欧姆接触层(8×1018 cm–3), 至此, 完成主体结构的外延设计.

    图 1 双载流子倍增APD结构示意图\r\nFig. 1. Schematic diagram of double carrier multiplication APD structure.
    图 1  双载流子倍增APD结构示意图
    Fig. 1.  Schematic diagram of double carrier multiplication APD structure.

    光信号波长为1.55 μm, 采用从背面入射, 结构的阴极和阳极分别与外电路的正极和负极连接, 在反向偏压下耗尽过程首先从两个倍增层开始, 随着偏压的增大, 耗尽区逐渐向吸收层扩展, 直至完成低掺杂区域的耗尽. 依靠多个电荷层控制吸收层和两个倍增层的电场强度大小, 使得光生电子和空穴可以顺利从吸收层进入两个倍增层发生雪崩倍增. 图2为拉通后器件的能带示意图, 光入射后, 在吸收层产生光生电子和空穴(实心圆表示电子, 空心圆表示空穴), 如图中的红色实线箭头所示, 在电场的作用下, 电子漂移至InAlAs倍增层, 空穴漂移至InP倍增层, 两种载流子分别在两个倍增层发生雪崩倍增效应, 均产生大量的电子和空穴. 红色虚线箭头表示在InP倍增层碰撞电离产生的电子, 又在电场的作用下, 经过吸收层后漂移至InAlAs倍增层, 电子在这里发生了二次倍增; 同样, 在InAlAs倍增层碰撞电离产生的空穴经过吸收层后, 漂移至InP倍增层, 空穴在此处发生了二次倍增, 相比于初次从吸收层产生进入倍增层的光生载流子, 进行二次倍增的载流子经过吸收层时会有相近或更大的漂移速度, 因此参与二次倍增的载流子中更多的会进入倍增层发生倍增效应, 而不是在吸收层漂移过程中发生复合湮灭. 虽然新结构利用了两种载流子参与倍增过程, 但是对于其中任何一个倍增层而言, 仍然为单载流子倍增形式, 所以过剩噪声不会急剧增加.

    图 2 双载流子倍增APD能带示意图\r\nFig. 2. Band diagram of the double carrier multiplication APD.
    图 2  双载流子倍增APD能带示意图
    Fig. 2.  Band diagram of the double carrier multiplication APD.

    使用Silvaco TCAD的Athena和Atlas分别对结构进行工艺和器件仿真, 其中器件仿真中用到的物理模型有: 浓度依赖迁移率模型(conmob)、载流子统计模型(Fermi-Dirac)、复合模型(srh, auger, optr)、能带变窄模型(bgn), 碰撞模型采用了Selb, Selberherr和Zappa模型. 表1列出了InAlAs和InP的碰撞电离系数的参数, 其中an, ap, bnbp为碰撞模型中计算碰撞电离系数时的参数值.

    表 1  InAlAs和InP碰撞电离系数的仿真参数
    Table 1.  Simulation parameters for the ionization coefficients of InAlAs and InP.
    材料 an/cm–1 ap/cm–1 bn/(V·cm–1) bp/(V·cm–1)
    InP 1.0×107 9.36×107 3.45×106 2.78×106
    InAlAs 6.2×107 1.00×106 4.00×106 4.00×106
    下载: 导出CSV 
    | 显示表格

    碰撞电离系数的计算公式为

    α=anexp(bn/E),β=apexp(bp/E),
    (1)

    α=qE1.9exp{0.217(1.9En)1.14[(0.217(1.9En)1.14)2+(1.9qEλn)2]0.5},β=qE1.4exp{0.217(1.4Ep)1.14[(0.217(1.4Ep)1.14)2+(1.4qEλp)2]0.5}.
    (2)

    这里,

    λn=41.7tanh(462kT),En=46tanh(462kT),λp=41.3tanh(362kT),EP=36tanh(362kT).

    (1)式、(2)式分别为Selberherr模型和Zappa模型中计算碰撞电离系数的数学表达式, 其中α, β分别为电子碰撞电离系数和空穴碰撞电离系数; EnEp分别为电子和空穴能量; λn, λp分别为电子和空穴的平均自由程; E为电场强度; k为玻尔兹曼常数; T为开尔文温度值.

    下文将双载流子倍增APD结构定义为结构Ⅰ. 如图3所示, 在零偏压条件下, 耗尽过程首先从两个倍增层开始, 内建电场使能带在这两个区域发生了弯曲, 并且弯曲方向一致; 另外, 靠近吸收层两侧的p+电荷层和n+电荷层也构成一个PN结, 使得吸收层也发生一定程度的耗尽, 所以吸收层能带也发生一定的弯曲, 只不过此处与两个倍增层的内建电场方向相反, 能带弯曲方向也就不同.

    图 3 结构Ⅰ零偏压能带分布\r\nFig. 3. Energy band distribution under zero bias of structure I.
    图 3  结构Ⅰ零偏压能带分布
    Fig. 3.  Energy band distribution under zero bias of structure I.

    图4图5分别为结构Ⅰ在击穿电压下的电场分布和碰撞电离系数分布. 由图4可以看出, 通过电荷层的调节, 使得两个倍增层的电场均高于吸收层的电场, 且吸收区电场低于其隧穿电场, 这样的电场分布有以下优势: 光生载流子可通过吸收区内的电场越过势垒进入倍增层, 而不在此处发生倍增效应; 同时, 这种较低的电场也减少了在吸收层产生的隧穿暗电流; 倍增层的高电场使进入此区域的载流子与晶格发生碰撞电离, 从而引起雪崩倍增效应, 产生大的光电流输出. 因为InAlAs材料比InP材料的碰撞电离阈值高, 所以需要让InAlAs倍增层的电场高于InP倍增层的电场. 需要注意的是, 倍增层的电场并非越大越好, 过大的电场会使倍增层能带更加弯曲, 从而会产生过大的隧穿暗电流.

    图 4 结构Ⅰ在击穿电压下的电场分布\r\nFig. 4. Distribution of electric field at breakdown voltage for structure Ⅰ.
    图 4  结构Ⅰ在击穿电压下的电场分布
    Fig. 4.  Distribution of electric field at breakdown voltage for structure Ⅰ.
    图 5 结构Ⅰ在击穿电压下的电离系数分布\r\nFig. 5. Distribution of ionization coefficient at breakdown voltage for structure Ⅰ.
    图 5  结构Ⅰ在击穿电压下的电离系数分布
    Fig. 5.  Distribution of ionization coefficient at breakdown voltage for structure Ⅰ.

    图6为模拟得到的结构Ⅰ的I-V特性曲线和增益曲线, 图7为结构Ⅰ在不同电压下对应的电场分布, 在反向偏压为15 V时, 首先完成了InP倍增层至吸收层下边缘的耗尽过程, 此时暗电流的急剧增加由产生-复合暗电流的突变引起[31], 由于吸收层内无电场, 光生载流子无法越过势垒进入倍增层发生倍增效应, 因此无光电流产生; 当反向偏压为36 V时, 完成了InAlAs倍增层至吸收层上边缘的耗尽过程, 此时吸收层电场和光电流仍为零; 随着反向偏压的继续增大, 吸收层内部开始耗尽而产生电场, 光电流也因此开始产生, 直至反向偏压为38 V时, 完成了整个器件的拉通, 对应穿通电压Vp = 38 V; 器件的击穿电压Vb = 69 V, 在95% Vb反向偏压下, 直径100 μm的器件暗电流为1.5 nA, 光电流为35 nA, 对应的增益M为35左右.

    图 6 结构Ⅰ的I-V特性与增益曲线\r\nFig. 6. Currrent-voltage characteristics and gain of the structure Ⅰ.
    图 6  结构Ⅰ的I-V特性与增益曲线
    Fig. 6.  Currrent-voltage characteristics and gain of the structure Ⅰ.
    图 7 不同反向偏压下结构Ⅰ的电场分布\r\nFig. 7. Electric field distribution of structure Ⅰ under the different reverse bias voltage.
    图 7  不同反向偏压下结构Ⅰ的电场分布
    Fig. 7.  Electric field distribution of structure Ⅰ under the different reverse bias voltage.

    将传统单载流子倍增APD仿真结果与本文新结构进行对比, 为方便表述, 下文将传统单InP倍增层结构和单InAlAs倍增层结构分别定义为结构Ⅱ和结构Ⅲ. 需要注意的是, 在仿真单载流子倍增APD结构时, 采用的仿真模型、材料参数、器件尺寸等与结构Ⅰ保持一致, 以保证对比结果的可靠性. 另外也要使结构Ⅱ和Ⅲ的性能参数达到文献[32]报道的正常水平, 其中倍增层厚度为0.4 μm和提供足够碰撞电离所需要的电场强度的条件下, 理论计算的单InP倍增层结构的平均增益范围为4—18, 实验测试的增益为10左右[33,34]. 相同的条件下, 理论计算的单InAlAs倍增层结构的平均增益范围为3—20[32], 实验测试的增益为15左右[33]. 图8为模拟得到的结构Ⅱ和结构Ⅲ的I-V特性以及增益曲线, 表2为3种结构的特性对比结果: 由于结构Ⅰ耗尽区宽度的增大, 要想获得与结构Ⅱ和结构Ⅲ耗尽区相同的电场, 结构Ⅰ需要更大的反向偏压, 所以结构Ⅰ的穿通电压和击穿电压都会比结构Ⅱ和结构Ⅲ大. 图9为简化后的结构Ⅰ电场分布图, 其中忽略了厚度较薄的电荷层和渐变层, 以及无电场分布的帽层和接触层, (3)式为与图9对应的结构Ⅰ电压Vapd表达式:

    图 8 I-V特性与增益曲线 (a)结构Ⅱ; (b)结构Ⅲ\r\nFig. 8. Curve of I-V characteristics and gain: (a) Structure Ⅱ; (b) structure Ⅲ.
    图 8  I-V特性与增益曲线 (a)结构Ⅱ; (b)结构Ⅲ
    Fig. 8.  Curve of I-V characteristics and gain: (a) Structure Ⅱ; (b) structure Ⅲ.
    表 2  三种结构特性对比
    Table 2.  Comparison of the characteristics of three structures.
    结构击穿电压/V暗电流/nA增益
    691.5(@66 V)35(@66 V)
    442.0(@42 V)15(@42 V)
    451.5(@43 V)18(@43 V)
    下载: 导出CSV 
    | 显示表格
    图 9 简化的结构Ⅰ电场分布\r\nFig. 9. Electric field distribution of the simplified structure Ⅰ.
    图 9  简化的结构Ⅰ电场分布
    Fig. 9.  Electric field distribution of the simplified structure Ⅰ.
    Vapd=Vm1+Va+Vm2=x10Exm1dx+x2x1Exadx+x3x2Exm2dx,
    (3)

    式中, Vm1, Va, Vm2分别为InP倍增层、吸收层、InAlAs倍增层的电压降, Exm1, Exa, Exm2为这3个区域的电场强度. 可以看出, 对比结构Ⅱ和结构Ⅲ, 在保证各对应功能层厚度和电场分布相同的条件下, 落在耗尽区各部分的电压降基本没有变化. 也就是说, 表2中结构Ⅰ相对于结构Ⅱ或结构Ⅲ高出的击穿电压值, 主要是所增加的一个倍增层的电压降. 关于暗电流, 结构Ⅰ相对于结构Ⅱ和结构Ⅲ而言, 增加一个倍增层后并没有引起暗电流的显著增大, 这是因为在倍增层内产生的暗电流主要成分为高电场下的隧穿暗电流, 而本文在仿真过程中, 对两个倍增层的电场进行一定的控制, 避免过高电场而导致的带间隧穿暗电流的增大. 因此, 增加一个倍增层后的结构, 可以保持与单倍增层结构相近的暗电流水平.

    增益方面, 由于结构Ⅰ中空穴倍增层与结构Ⅱ中倍增层的材料和厚度相同, 并且调节后两层的电场大小接近, 所以可以推测, 在结构Ⅰ的空穴倍增层中产生的增益应该接近结构Ⅱ产生的增益; 同理, 在结构Ⅰ的电子倍增层中产生的增益应该接近结构Ⅲ产生的增益. 另外, 在结构Ⅰ中的空穴倍增层碰撞形成的电子进入到电子倍增层后也会参与电子主导的雪崩倍增而增加光电流输出. 同理, 在电子倍增层碰撞形成的空穴进入空穴倍增层后也会参与空穴主导的雪崩倍增, 进而也会增加结构Ⅰ增益. 总之, 由于结构Ⅰ实现了两种载流子分别在两个倍增层内同时倍增, 因此会产生比结构Ⅱ和结构Ⅲ更大的光电流增益. 从理论上来说, 结构Ⅰ的增益值应该接近结构Ⅱ和结构Ⅲ的增益值之和, 仿真结果基本符合此理论预测.

    在传统SAGCM单载流子倍增结构的基础上, 设计了双载流子倍增的APD新结构, 其中电子倍增层选用的材料为InAlAs, 空穴倍增层选用的材料为InP, 可以实现电子和空穴在两个倍增层分别进行倍增, 在不增加暗电流的基础上, 显著提高了光电流增益. 使用Silvaco TCAD软件对3种结构分别进行了仿真, 在95%击穿电压和器件直径为100 μm条件下, 三者的暗电流水平几乎相同, 结构Ⅰ的暗电流为1.5 nA, 结构Ⅱ的暗电流为2 nA, 结构Ⅲ的暗电流为1.5 nA. 增益方面, 结构Ⅰ相对于后两种结构有明显优势, 结构Ⅰ增益值为35, 结构Ⅱ和结构Ⅲ增益值分别为15和18, 显示出双载流子倍增APD在探测极微弱信号领域具有较大应用潜力.

    本文使用的结构是InP衬底上的InP/InGaAs/InAlAs材料体系, 基于此结构设计框架, 可以对衬底、电子倍增层、空穴倍增层等外延层进行材料替换, 同样能够实现对应材料体系下的双载流子倍增.

    感谢中国科学院半导体研究所和潍坊先进光电芯片研究院给予的技术和资金支持, 感谢曲阜师范大学的培养和支持.

    [1]

    Mccarthy A, Ren X, Della F A, Gemmell N R, Krichel N J, Scarcella C, Rugger A, Tosi A, Buller G S 2013 Opt. Express 21 22098Google Scholar

    [2]

    Bertone N, Clark W 2007 Laser Focus World 43 69

    [3]

    Mitra P, Beck J D, Skokan M R, Skokan M R, Robinson J E, Antoszewski J, Winchester K J, Keating A J, Nguyen T, Silva K, Musca C A, Dell J M, Faraone L 2006 SPIE Defense Commercial Sensing Orlando, United States, April 14–19, 2006 p70

    [4]

    Tosi A, Calandri N, Sanzaro M, Acerbi F 2014 IEEE J. Sel. Top. Quant. 20 192Google Scholar

    [5]

    Jiang X, Itzler M, O’Donnell K, Entwistle M, Owens M, Slomkowski K, Rangwala S S 2014 IEEE J. Sel. Top. Quant. 21 5Google Scholar

    [6]

    Lee C, Johnson B, Molnar A C 2015 App. Phys. Lett. 106 231105Google Scholar

    [7]

    Nishida K, Taguchi K, Matsumoto Y 1979 App. Phys. Lett. 35 251Google Scholar

    [8]

    Li J, Dehzangi A, Brown G J, Razeghi M 2021 Sci. Rep. 11 7104Google Scholar

    [9]

    Tarof L E 1990 IEEE Photonic. Tech. L. 2 643Google Scholar

    [10]

    Campbell J C, Dentai A G, Holden W S, Kasper B L 1983 Electron. Lett. 19 818Google Scholar

    [11]

    Matsushima Y, Akiba S, Sakai K, Kushiro Y, Noda Y, Utaka K 1982 Electron. Lett. 22 945Google Scholar

    [12]

    Capasso F, Cho A Y, Foy P W 1984 Electron. Lett. 20 635Google Scholar

    [13]

    Forrest S R, Kim O K, Smith R G 1982 App. Phys. Lett. 41 95Google Scholar

    [14]

    Ma C, Deen M J, Tarof L E 1995 IEEE Trans. Electron Devices 42 2070Google Scholar

    [15]

    Emmons R B 1967 J. Appl. Phys. 38 3705Google Scholar

    [16]

    Mcintyre R J 1966 IEEE Trans. Electron Devices 13 164Google Scholar

    [17]

    曾巧玉 2014 博士学位论文 (北京: 中国科学院大学)

    Zeng Q Y 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [18]

    吕粤希 2018 硕士学位论文 (北京: 中国科学院大学)

    Lü Y X 2018 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [19]

    Cook L W, Bulman G E, Stillman G E 1982 App. Phys. Lett. 40 589Google Scholar

    [20]

    Goh Y L, Massey D, Marshall A R, Ng J S, Tan C H, Ng W K, Rees G J, Hopkinson M, David J P, Jones S 2007 IEEE Trans. Electron Devices 54 11Google Scholar

    [21]

    Capasso F, Mohammed K, Alavi K, Cho A Y, Foy P W 1984 App. Phys. Lett. 45 968Google Scholar

    [22]

    Melchior H, Hartman A R, Schinke D P, Seidel T E 1978 Bell Syst. Tech. J. 57 1791Google Scholar

    [23]

    Li X, Bamiedakis N, Wei J L, Penty R V, White I H 2014 Conference on Lasers and Electro-Optics (CLEO)—Laser Science to Photonic Applications San Jose, United States, June 8–13, 2014 p1

    [24]

    Campbell J C 2004 IEEE J. Sel. Top. Quant. 10 777Google Scholar

    [25]

    Miller S L 1955 Phys. Rev. 99 1234Google Scholar

    [26]

    Ma C F, Deen M J, Tarof L E 1997 Adv. Imag. Elect. Phys. 99 65Google Scholar

    [27]

    Jones A H, March S D, Dadey A A, Muhowski A J, Bank S R, Campbell J C 2022 IEEE J. Quantum Electron. 58 1Google Scholar

    [28]

    Woodson M E, Ren M, Maddox S J, Chen Y, Bank S R, Campbell J C 2016 App. Phys. Lett. 108 081102Google Scholar

    [29]

    Huang J, Banerjee K, Ghosh S, Hayat M M 2013 IEEE Trans. Electron Devices 60 2296Google Scholar

    [30]

    Okuto Y, Crowell C R 1974 Phys. Rev. B 10 4284Google Scholar

    [31]

    谢生, 张帆, 毛陆虹 2022 华中科技大学学报(自然科学版) 5 1Google Scholar

    Xie S, Zhang F, Mao L H 2022 J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition) 5 1Google Scholar

    [32]

    Saleh M A, Hayat M M, Sotirelis P, Holmes A L, Campbell J C, Saleh B E, Teich M C 2001 IEEE Trans. Electron Devices 48 2722Google Scholar

    [33]

    李慧梅 2016 硕士学位论文 (北京: 中国科学院大学)

    Li H M 2016 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [34]

    Haško D, Kovác J, Uherek F, Škriniarová J, Jakabovic J, Peternai L 2006 Microelectron. J. 37 483Google Scholar

  • 图 1  双载流子倍增APD结构示意图

    Figure 1.  Schematic diagram of double carrier multiplication APD structure.

    图 2  双载流子倍增APD能带示意图

    Figure 2.  Band diagram of the double carrier multiplication APD.

    图 3  结构Ⅰ零偏压能带分布

    Figure 3.  Energy band distribution under zero bias of structure I.

    图 4  结构Ⅰ在击穿电压下的电场分布

    Figure 4.  Distribution of electric field at breakdown voltage for structure Ⅰ.

    图 5  结构Ⅰ在击穿电压下的电离系数分布

    Figure 5.  Distribution of ionization coefficient at breakdown voltage for structure Ⅰ.

    图 6  结构Ⅰ的I-V特性与增益曲线

    Figure 6.  Currrent-voltage characteristics and gain of the structure Ⅰ.

    图 7  不同反向偏压下结构Ⅰ的电场分布

    Figure 7.  Electric field distribution of structure Ⅰ under the different reverse bias voltage.

    图 8  I-V特性与增益曲线 (a)结构Ⅱ; (b)结构Ⅲ

    Figure 8.  Curve of I-V characteristics and gain: (a) Structure Ⅱ; (b) structure Ⅲ.

    图 9  简化的结构Ⅰ电场分布

    Figure 9.  Electric field distribution of the simplified structure Ⅰ.

    表 1  InAlAs和InP碰撞电离系数的仿真参数

    Table 1.  Simulation parameters for the ionization coefficients of InAlAs and InP.

    材料 an/cm–1 ap/cm–1 bn/(V·cm–1) bp/(V·cm–1)
    InP 1.0×107 9.36×107 3.45×106 2.78×106
    InAlAs 6.2×107 1.00×106 4.00×106 4.00×106
    DownLoad: CSV

    表 2  三种结构特性对比

    Table 2.  Comparison of the characteristics of three structures.

    结构击穿电压/V暗电流/nA增益
    691.5(@66 V)35(@66 V)
    442.0(@42 V)15(@42 V)
    451.5(@43 V)18(@43 V)
    DownLoad: CSV
  • [1]

    Mccarthy A, Ren X, Della F A, Gemmell N R, Krichel N J, Scarcella C, Rugger A, Tosi A, Buller G S 2013 Opt. Express 21 22098Google Scholar

    [2]

    Bertone N, Clark W 2007 Laser Focus World 43 69

    [3]

    Mitra P, Beck J D, Skokan M R, Skokan M R, Robinson J E, Antoszewski J, Winchester K J, Keating A J, Nguyen T, Silva K, Musca C A, Dell J M, Faraone L 2006 SPIE Defense Commercial Sensing Orlando, United States, April 14–19, 2006 p70

    [4]

    Tosi A, Calandri N, Sanzaro M, Acerbi F 2014 IEEE J. Sel. Top. Quant. 20 192Google Scholar

    [5]

    Jiang X, Itzler M, O’Donnell K, Entwistle M, Owens M, Slomkowski K, Rangwala S S 2014 IEEE J. Sel. Top. Quant. 21 5Google Scholar

    [6]

    Lee C, Johnson B, Molnar A C 2015 App. Phys. Lett. 106 231105Google Scholar

    [7]

    Nishida K, Taguchi K, Matsumoto Y 1979 App. Phys. Lett. 35 251Google Scholar

    [8]

    Li J, Dehzangi A, Brown G J, Razeghi M 2021 Sci. Rep. 11 7104Google Scholar

    [9]

    Tarof L E 1990 IEEE Photonic. Tech. L. 2 643Google Scholar

    [10]

    Campbell J C, Dentai A G, Holden W S, Kasper B L 1983 Electron. Lett. 19 818Google Scholar

    [11]

    Matsushima Y, Akiba S, Sakai K, Kushiro Y, Noda Y, Utaka K 1982 Electron. Lett. 22 945Google Scholar

    [12]

    Capasso F, Cho A Y, Foy P W 1984 Electron. Lett. 20 635Google Scholar

    [13]

    Forrest S R, Kim O K, Smith R G 1982 App. Phys. Lett. 41 95Google Scholar

    [14]

    Ma C, Deen M J, Tarof L E 1995 IEEE Trans. Electron Devices 42 2070Google Scholar

    [15]

    Emmons R B 1967 J. Appl. Phys. 38 3705Google Scholar

    [16]

    Mcintyre R J 1966 IEEE Trans. Electron Devices 13 164Google Scholar

    [17]

    曾巧玉 2014 博士学位论文 (北京: 中国科学院大学)

    Zeng Q Y 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [18]

    吕粤希 2018 硕士学位论文 (北京: 中国科学院大学)

    Lü Y X 2018 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [19]

    Cook L W, Bulman G E, Stillman G E 1982 App. Phys. Lett. 40 589Google Scholar

    [20]

    Goh Y L, Massey D, Marshall A R, Ng J S, Tan C H, Ng W K, Rees G J, Hopkinson M, David J P, Jones S 2007 IEEE Trans. Electron Devices 54 11Google Scholar

    [21]

    Capasso F, Mohammed K, Alavi K, Cho A Y, Foy P W 1984 App. Phys. Lett. 45 968Google Scholar

    [22]

    Melchior H, Hartman A R, Schinke D P, Seidel T E 1978 Bell Syst. Tech. J. 57 1791Google Scholar

    [23]

    Li X, Bamiedakis N, Wei J L, Penty R V, White I H 2014 Conference on Lasers and Electro-Optics (CLEO)—Laser Science to Photonic Applications San Jose, United States, June 8–13, 2014 p1

    [24]

    Campbell J C 2004 IEEE J. Sel. Top. Quant. 10 777Google Scholar

    [25]

    Miller S L 1955 Phys. Rev. 99 1234Google Scholar

    [26]

    Ma C F, Deen M J, Tarof L E 1997 Adv. Imag. Elect. Phys. 99 65Google Scholar

    [27]

    Jones A H, March S D, Dadey A A, Muhowski A J, Bank S R, Campbell J C 2022 IEEE J. Quantum Electron. 58 1Google Scholar

    [28]

    Woodson M E, Ren M, Maddox S J, Chen Y, Bank S R, Campbell J C 2016 App. Phys. Lett. 108 081102Google Scholar

    [29]

    Huang J, Banerjee K, Ghosh S, Hayat M M 2013 IEEE Trans. Electron Devices 60 2296Google Scholar

    [30]

    Okuto Y, Crowell C R 1974 Phys. Rev. B 10 4284Google Scholar

    [31]

    谢生, 张帆, 毛陆虹 2022 华中科技大学学报(自然科学版) 5 1Google Scholar

    Xie S, Zhang F, Mao L H 2022 J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition) 5 1Google Scholar

    [32]

    Saleh M A, Hayat M M, Sotirelis P, Holmes A L, Campbell J C, Saleh B E, Teich M C 2001 IEEE Trans. Electron Devices 48 2722Google Scholar

    [33]

    李慧梅 2016 硕士学位论文 (北京: 中国科学院大学)

    Li H M 2016 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [34]

    Haško D, Kovác J, Uherek F, Škriniarová J, Jakabovic J, Peternai L 2006 Microelectron. J. 37 483Google Scholar

  • [1] Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang. Single-photon ranging with hundred-micron accuracy. Acta Physica Sinica, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [2] Xu Jin, Guo Yang-Ning, Luo Ning-Ning, Li Shu-Jing, Shi Jiu-Lin, He Xing-Dao. Influence of water parameters on threshold value and gain coefficient of stimulated Brillouin scattering. Acta Physica Sinica, 2021, 70(15): 154205. doi: 10.7498/aps.70.20210326
    [3] Zhang Hai-Yan, Wang Lin-Li, Wu Chen-Yi, Wang Yu-Rong, Yang Lei, Pan Hai-Feng, Liu Qiao-Li, Guo Xia, Tang Kai, Zhang Zhong-Ping, Wu Guang. Avalanche photodiode single-photon detector with high time stability. Acta Physica Sinica, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [4] Wang Yun-Xin, Li Hong-Li, Wang Da-Yong, Li Jing-Nan, Zhong Xin, Zhou Tao, Yang Deng-Cai, Rong Lu. Dual-parallel Mach-Zehnder modulator based microwave photonic down-conversion link with high dynamic range. Acta Physica Sinica, 2017, 66(9): 098401. doi: 10.7498/aps.66.098401
    [5] Zhang Yu-Lian, Qi Hui-Rong, Hu Bi-Tao, Wen Zhi-Wen, Wang Hai-Yun, Ouyang Qun, Chen Yuan-Bo, Zhang Jian. Measurement and simulation of the hybrid structure gaseous detector gain. Acta Physica Sinica, 2017, 66(14): 142901. doi: 10.7498/aps.66.142901
    [6] Zhang Yi-Lun, Lan Tian, Gao Ming-Guang, Zhao Tao, Shen Zhen-Min. Design of two-cascade optical antenna for indoor visible light communication. Acta Physica Sinica, 2015, 64(16): 164201. doi: 10.7498/aps.64.164201
    [7] Niu De-Zhi, Chen Chang-Xing, Ban Fei, Xu Hao-Xiang, Li Yong-Bin, Wang Zhuo, Ren Xiao-Yue, Chen Qiang. Blind angle elimination method in weak signal detection with Duffing oscillator and construction of detection statistics. Acta Physica Sinica, 2015, 64(6): 060503. doi: 10.7498/aps.64.060503
    [8] Shen Yun, Fu Ji-Wu, Yu Guo-Ping. Influence of gain on propagation properties of slow light in one-dimensional periodic structures. Acta Physica Sinica, 2014, 63(17): 174202. doi: 10.7498/aps.63.174202
    [9] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [10] Zhang Xuan-Ni, Zhang Chun-Min, Ai Jing-Jing. The signal-to-noise ratio of the quarter beam of wind imaging polarization interferometer. Acta Physica Sinica, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [11] Tian Xiang-You, Leng Yong-Gang, Fan Sheng-Bo. Parameter-adjusted stochastic resonance of first-order linear system. Acta Physica Sinica, 2013, 62(2): 020505. doi: 10.7498/aps.62.020505
    [12] Li Xiao-Li, Shang Ya-Xuan, Sun Jiang. Splitting of electromagnetically induced transparency window and appearing of gain due to radio frequency field. Acta Physica Sinica, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [13] Xu Xue-Mei, Dai Peng, Yang Bing-Chu, Yin Lin-Zi, Cao Jian, Ding Yi-Peng, Cao Can. Weak photoacoustic signal detection in photoacoustic cell. Acta Physica Sinica, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [14] Fan Sheng-Nan, Wang Bo, Qi Hui-Rong, Liu Mei, Zhang Yu-Lian, Zhang Jian, Liu Rong-Guang, Yi Fu-Ting, Ouyang Qun, Chen Yuan-Bo. Study on the performance of a high-gain gas electron multiplier-MicroMegas chamber. Acta Physica Sinica, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [15] Zheng Kui-Song, Wu Chang-Ying, Wan Guo-Bin, Wei Gao. Implementation of two-element antenna array with right/left-handed transmission line metamaterials. Acta Physica Sinica, 2011, 60(5): 054104. doi: 10.7498/aps.60.054104
    [16] He Jing-Bo, Liu Zhong, Hu Sheng-Liang. Detection of weak signal based on the sea clutter scattering. Acta Physica Sinica, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [17] Cheng Nan, Huang Gang-Feng, Wang Jin-Dong, Wei Zheng-Jun, Guo Jian-Ping, Liao Chang-Jun, Liu Song-Hao. Analysis of single photon detector based on the reflection of coaxial cables. Acta Physica Sinica, 2010, 59(8): 5338-5344. doi: 10.7498/aps.59.5338
    [18] Shao Gong-Wang, Dai Ya-Jun, Jin Guo-Liang. Overlap factor between intensity profiles of signal and pump light and gain characteristics of Er-doped waveguide amplifier. Acta Physica Sinica, 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [19] Zhang Xiao-Dong, Yang He-Run, Duan Li-Min, Xu Hu-Shan, Hu Bi-Tao, Li Chun-Yan, Li Zu-Yu. Study on the count plateau, gas gain and energy resolution of the Micromegas detectors. Acta Physica Sinica, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [20] Jiang Yong-Liang, Zhao Bao-Zhen, Liang Xiao-Yan, Leng Yu-Xin, Li Ru-Xin, Xu Zhi-Zhan, Hu Xiao-Peng, Zhu Shi-Ning. High-gain degenerated optical parametric chirped-pulse amplification in periodically poled LiTaO3. Acta Physica Sinica, 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
Metrics
  • Abstract views:  3750
  • PDF Downloads:  105
Publishing process
  • Received Date:  29 May 2023
  • Accepted Date:  28 July 2023
  • Available Online:  02 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回