Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of spin-orbit torque magnetic tunnel junction model without external magnetic field assistance based on antiferromagnetism

Wang Ke-Xin Su Li Tong Liang-Le

Citation:

Analysis of spin-orbit torque magnetic tunnel junction model without external magnetic field assistance based on antiferromagnetism

Wang Ke-Xin, Su Li, Tong Liang-Le
PDF
HTML
Get Citation
  • The effect of spin-orbit torque (SOT) provides a new method of implementing ultra-low power spintronic devices. The in-plane exchange bias (EB) field in antiferromagnetic material can effectively assist SOT magnetization switching. Meanwhile, the utilization of voltage-controlled magnetic anisotropy (VCMA) can effectively reduce the switching barrier. Taking advantage of the EB and VCMA effect, it is possible to realize SOT magnetic tunnel junctions without external field assistance. In this work, a spin-orbit torque magnetic tunnel junction model composed of antiferromagnetic/ferromagnetism/oxides without external magnetic field is developed by solving the modified Landau-Lifshitz-Gilbert (LLG) modular equation, and its magnetization dynamics is analyzed and studied. The effective fields in the model include the demagnetization field, thermal noise field, perpendicular magnetic anisotropy field with VCMA effect, and exchange bias field. Taking IrMn/CoFeB/MgO material system for example, the factors affecting the precession of magnetization are investigated, such as the effect of the exchange bias field, the VCMA effect and the mechanism of SOT field-like torque. Considering the practical applications, the effect of the deviation of the fabrication process of magnetic tunnel junctions is also analyzed. The simulation results demonstrate that the combined effect of $ {{\boldsymbol{H}}_{{\text{EB}}}} $ with VCMA effect can greatly reduce the critical ISOT, thus assisting and realizing the complete field-free magnetization reversal; the SOT field-like torque plays a dominant role in realizing the magnetization reversal, and by adjusting the ratio of the SOT field-like torque to the damping-like torque, field free switching can be realized in the device at the ps grade ; and the MTJ can realize effective switching when the deviation of oxide thickness $ {\gamma _{{\text{tf}}}} \leqslant 10{\text{%}} $ or the deviation of free layer thickness $ {\gamma _{{\text{tox}}}} \leqslant 13{\text{%}}$. Spin-orbit torque devices based on the antiferromagnetic without external magnetic field will provide highly promising solutions for a new-generation ultra-low power, ultra-high speed, and ultra-high integration devices and circuits.
      Corresponding author: Su Li, li.su@cnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 4194073), the Science and Technology Plan General Project of Beijing, China (Grant No. KM202110028010), the Outstanding Talent Cultivation Funding for Young Backbone Individual Project and Organization Department of Beijing Municipal Committee, China (Grant No. 2018000020124G124).
    [1]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar

    [2]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [3]

    Berger L 1992 J. Appl. Phys. 71 2721Google Scholar

    [4]

    Wang Z H, Zhou H C, Wang M X, Cai W L, Zhu D Q, Klein J O, Zhao W S 2019 IEEE Electr. Device L. 40 726Google Scholar

    [5]

    Fong B, Fong A C M, Hong G Y, Ryu H 2005 IEEE Antenn. Wirel. Pr. 4 20Google Scholar

    [6]

    Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garrello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [7]

    粟傈, 童良乐, 李晴, 王可欣 2023 电子元件与材料 42 127Google Scholar

    Su L, Tong L L, Li Q, Wang K X 2023 Electr. Comp. Mater. 42 127Google Scholar

    [8]

    Zhou J, Shu X Y, Liu Y H, Wang X, Lin W N, Chen S H, Liu L, Xie Q D, Hong T, Yang P, Yan B H, Han X F, Chen J S 2020 Phys. Rev. B 101 184403Google Scholar

    [9]

    Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nat. Mater. 10 347Google Scholar

    [10]

    Lau Y C, Betto D, Rode K, Coey, J M D, Stamenov P 2016 Nat. Nanotechnol. 11 758Google Scholar

    [11]

    Liu Y, Zhou B, Zhu J G 2019 Sci. Rep. UK 9 325Google Scholar

    [12]

    Wang M X, Zhou J, Xu X G, Zhang T Z, Zhu Z Q, Guo Z X, Deng Y B, Yang M, Meng K K, He B, Li J L, Yu G Q, Zhu T, Li A, Han X D, Jiang Y 2023 Nat. Commun. 14 2871Google Scholar

    [13]

    Lin P H, Yang B Y, Tsai M H, Chen P C, Huang K F, Lin H H, La C H 2019 Nat. Mater. 18 335Google Scholar

    [14]

    Kim H J, Je S G, Jung D H, Lee K S, Hong J I 2019 Appl. Phys. Lett. 115 022401Google Scholar

    [15]

    Amiri P K, Alzate J G, Cai X Q, Ebrahim F, Hu Q, Wong K, Grèzes C, Lee H, Yu G Q, Li X, Akyol M, Shao Q M, Katine J A, Langer J, Ocker B, Wang K L 2015 IEEE T. Magn. 51 1Google Scholar

    [16]

    Wang W G, Li M, Hageman S, Chien C L 2012 Nat. Mater. 11 64Google Scholar

    [17]

    Alzate J G, Amiri P K, Upadhyaya P, Cherepov S S, Zhu J, Lewis M, Dorrance R, Katine J A, Langer J, Galatsis K, Markovic D, Krivorotov I, Wang K L 2012 IEEE IEDM San Francisco, CA, USA, December 10–13, 1999 p29.5. 1

    [18]

    Zhang H, Kang W, Wang L, Wang K L, Zhao W 2017 IEEE T Electron. Dev. 64 4295Google Scholar

    [19]

    Inokuchi T, Yoda H, Kato Y, Shimizu M, Shirotori S, Shimomura N, Koi K, Kamiguchi Y, Sugiyama H, Oikawa S, Ikegami K, Ishikawa M, Altansargai B, Tiwari A, Ohsawa Y, Saito Y, Kurobe A 2017 Appl. Phys. Lett. 110 1

    [20]

    Lee K, Kan J, Kang S H 2017 US Patent 9 589 619

    [21]

    Zhang K L, Zhang D M, Wang C Z, Zeng L, Wang Y, Zhao W S 2020 IEEE Access. 8 50792Google Scholar

    [22]

    Wang Y, Cai H, Naviner L A B, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [23]

    Meng H, Lum W H, Sbiaa R, Lua S Y H, Tan H K 2011 J. Appl. Phys. 110 033904Google Scholar

    [24]

    Jeong J, Endoh T 2017 Jpn. J. Appl. Phys. 56 04CE09Google Scholar

    [25]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [26]

    Kazemi M, Rowlands G E, Ipek E, Buhrman R A, Friedman E G 2016 IEEE T. Electron. Dev. 63 848Google Scholar

    [27]

    Lee H, Lee A, Wang S D, Ebrahimi F, Gupta P, Amiri P K, Wang K L 2018 IEEE T. Magn. 54 1Google Scholar

    [28]

    Kang W, Ran Y, Zhang Y G, Lü W F, Zhao W S 2017 IEEE T. Nanotechnol. 16 387Google Scholar

    [29]

    王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌 2023 物理学报 72 087202Google Scholar

    Wang R X, Zeng Y H, Zhao J L, Li L, Xiao Y C 2023 Acta Phys. Sin. 72 087202Google Scholar

    [30]

    Legrand W, Ramaswamy R, Mishra R, Yang H 2015 Phys. Rev. Appl. 3 064012Google Scholar

    [31]

    金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟 2020 物理学报 69 198502Google Scholar

    Jin D Y, Chen H, Wang Y, Zhang W R, Na W C, Guo B, Wu L, Yang S M, Sun S 2020 Acta Phys. Sin. 69 198502Google Scholar

    [32]

    金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣 2022 物理学报 71 107501Google Scholar

    Jin D Y, Cao L M, Wang Y, Jia X X, Pan Y A, Zhou Y X, Lei X, Liu Y Y, Yang Y Q, Zhang W R 2022 Acta Phys. Sin. 71 107501Google Scholar

    [33]

    Rata A D, Braak H, Bürgler D E, Schneider C M 2007 Appl. Phys. Lett. 90 162512Google Scholar

    [34]

    Gajek M, Nowak J J, Sun J Z, Trouilloud P L, O’ sullivan E J, Abraham D W, Gaidis M C, Hu G, Brown S, Zhu Y, Robertazzi R P, Gallagher W J, Worledge D C 2012 Appl. Phys. Lett. 100 132408Google Scholar

  • 图 1  (a) VCSOT-MTJ器件基本结构图; (b) 外加电压(Vb)对能量势垒(Eb)的影响

    Figure 1.  (a) Basic schematic structure of VCSOT-MTJ device; (b) effect of applied voltage (Vb) on energy potential barrier (Eb).

    图 2  (a) AP态切换到P态器件外加电压随时间的变化; (b) $ {t}_{0}<t\leqslant {t}_{1} $磁化翻转示意图; (c) $ {t}_{1}<t\leqslant {t}_{2} $磁化翻转示意图; (d) $ {t}_{2}< $$ t\leqslant {t}_{3} $磁化翻转示意图

    Figure 2.  (a) Change of the applied voltage of a device from AP state to P state with time; (b) schematic diagram of magnetization reversal during $ {t}_{0}<t\leqslant {t}_{1} $; (c) schematic diagram of magnetization reversal during $ {t}_{1}<t\leqslant {t}_{2} $; (c) schematic diagram of magnetization reversal during $ {t}_{2}<t\leqslant {t}_{3} $

    图 3  (a) AP状态下$ {\boldsymbol{H}}_{{\text{EFF}}}' $在坐标轴的分量; (b)不同$ {{\boldsymbol{H}}_{{\text{EB}}}} $下的临界$ {I_{{\text{SOT}}}} $

    Figure 3.  (a) Component of $ {\boldsymbol{H}}_{{\text{EFF}}}' $ on the coordinate axis in AP state; (b) critical $ {I_{{\text{SOT}}}} $ under different $ {{\boldsymbol{H}}}_{{\text{EB}}} $.

    图 4  VCSOT-MTJ磁化状态随时间的变化曲线

    Figure 4.  Magnetization state over time of VCSOT-MTJ.

    图 5  (a) VCSOT-MTJ在不同$ {{\boldsymbol{H}}_{{\text{EB}}}} $下改变V1的临界$ {I_{{\text{SOT}}}} $; (b)截取部分临界$ {I_{{\text{SOT}}}} $下降趋势

    Figure 5.  (a) Critical $ {I_{{\text{SOT}}}} $ of VCSOT-MTJ under different $ {{\boldsymbol{H}}_{{\text{EB}}}} $ and V1; (b) intercepted part of the critical $ {I_{{\text{SOT}}}} $ downward trend.

    图 6  (a) SOT类场转矩与类阻尼转矩不同比值下mz随时间变化; (b)考虑SOT类场转矩的ps级磁化翻转

    Figure 6.  (a) Time evolutions of magnetization mz with different damping-like torque and field-like toque; (b) consideration of SOT field-like torque for ps-level magnetization switching.

    图 7  VCSOT-MTJ状态切换的影响因素 (a) V1, V3$ {\gamma _{{\text{tf}}}} $; (b) V1, V3$ {\gamma _{{\text{tox}}}} $

    Figure 7.  Factors affecting on the state switching of VCSOT-MTJ: (a) V1, V3 and $ {\gamma _{{\text{tf}}}} $; (b) V1, V3 and $ {\gamma _{{\text{tox}}}} $.

    图 8  刻蚀偏差对VCSOT-MTJ磁化翻转的影响

    Figure 8.  Effect of etching deviation on the magnetization direction switching of VCSOT-MTJ.

    表 1  VCSOT-MTJ模型部分参数

    Table 1.  Partial parameters of the VCSOT-MTJ model.

    参数 符号 默认值
    饱和磁化强度 $ {M_{\text{s}}} $ $ 0.625 \times {10^6}~{\rm A}{\text{/m}} $
    垂直磁各向异性系数 $ {K_{\text{i}}} $ $ 3.2 \times {10^{{{ - }}4}}~{\text{J/}}{{\text{m}}^{2}} $
    MTJ直径 $ D $ 50 nm
    VCMA系数 $ \beta $ $ 60~ {\text{fJ/(V}}{\cdot}{\text{m)}} $
    自旋极化率 $ P $ $ 0.58 $
    温度 $ T $ 300 K
    氧化层厚度值 $ {t_{{\text{ox}}}} $ 1.4 nm
    自由层厚度值 $ {t_{\text{f}}} $ 1.1 nm
    自旋霍尔角 $ {\theta _{{\text{SH}}}} $ $ 0.25 $
    $ H_{{\text{STT}}}^{{\text{FL}}} $与$ H_{{\text{STT}}}^{{\text{DL}}} $比值 $ {\xi _1} $ $ 0 $
    $ H_{{\text{SOT}}}^{{\text{FL}}} $与$ H_{{\text{SOT}}}^{{\text{DL}}} $比值 $ {\xi _2} $ $ 0 $
    AFM材料长, 宽, 高 $ {L_{{\text{AFM}}}}, {W_{{\text{AFM}}}}, {T_{{\text{AFM}}}} $ $ 60\,{\text{nm,}}\;{50}\,{\text{nm,}}\;{3}\,{\text{nm}} $
    AFM电阻率 $ {\rho _{{\text{AFM}}}} $ $ 2.78 \times {10^{{{-}}6}}\;\Omega{\cdot}{\text{m}} $
    DownLoad: CSV
  • [1]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar

    [2]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [3]

    Berger L 1992 J. Appl. Phys. 71 2721Google Scholar

    [4]

    Wang Z H, Zhou H C, Wang M X, Cai W L, Zhu D Q, Klein J O, Zhao W S 2019 IEEE Electr. Device L. 40 726Google Scholar

    [5]

    Fong B, Fong A C M, Hong G Y, Ryu H 2005 IEEE Antenn. Wirel. Pr. 4 20Google Scholar

    [6]

    Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garrello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [7]

    粟傈, 童良乐, 李晴, 王可欣 2023 电子元件与材料 42 127Google Scholar

    Su L, Tong L L, Li Q, Wang K X 2023 Electr. Comp. Mater. 42 127Google Scholar

    [8]

    Zhou J, Shu X Y, Liu Y H, Wang X, Lin W N, Chen S H, Liu L, Xie Q D, Hong T, Yang P, Yan B H, Han X F, Chen J S 2020 Phys. Rev. B 101 184403Google Scholar

    [9]

    Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nat. Mater. 10 347Google Scholar

    [10]

    Lau Y C, Betto D, Rode K, Coey, J M D, Stamenov P 2016 Nat. Nanotechnol. 11 758Google Scholar

    [11]

    Liu Y, Zhou B, Zhu J G 2019 Sci. Rep. UK 9 325Google Scholar

    [12]

    Wang M X, Zhou J, Xu X G, Zhang T Z, Zhu Z Q, Guo Z X, Deng Y B, Yang M, Meng K K, He B, Li J L, Yu G Q, Zhu T, Li A, Han X D, Jiang Y 2023 Nat. Commun. 14 2871Google Scholar

    [13]

    Lin P H, Yang B Y, Tsai M H, Chen P C, Huang K F, Lin H H, La C H 2019 Nat. Mater. 18 335Google Scholar

    [14]

    Kim H J, Je S G, Jung D H, Lee K S, Hong J I 2019 Appl. Phys. Lett. 115 022401Google Scholar

    [15]

    Amiri P K, Alzate J G, Cai X Q, Ebrahim F, Hu Q, Wong K, Grèzes C, Lee H, Yu G Q, Li X, Akyol M, Shao Q M, Katine J A, Langer J, Ocker B, Wang K L 2015 IEEE T. Magn. 51 1Google Scholar

    [16]

    Wang W G, Li M, Hageman S, Chien C L 2012 Nat. Mater. 11 64Google Scholar

    [17]

    Alzate J G, Amiri P K, Upadhyaya P, Cherepov S S, Zhu J, Lewis M, Dorrance R, Katine J A, Langer J, Galatsis K, Markovic D, Krivorotov I, Wang K L 2012 IEEE IEDM San Francisco, CA, USA, December 10–13, 1999 p29.5. 1

    [18]

    Zhang H, Kang W, Wang L, Wang K L, Zhao W 2017 IEEE T Electron. Dev. 64 4295Google Scholar

    [19]

    Inokuchi T, Yoda H, Kato Y, Shimizu M, Shirotori S, Shimomura N, Koi K, Kamiguchi Y, Sugiyama H, Oikawa S, Ikegami K, Ishikawa M, Altansargai B, Tiwari A, Ohsawa Y, Saito Y, Kurobe A 2017 Appl. Phys. Lett. 110 1

    [20]

    Lee K, Kan J, Kang S H 2017 US Patent 9 589 619

    [21]

    Zhang K L, Zhang D M, Wang C Z, Zeng L, Wang Y, Zhao W S 2020 IEEE Access. 8 50792Google Scholar

    [22]

    Wang Y, Cai H, Naviner L A B, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [23]

    Meng H, Lum W H, Sbiaa R, Lua S Y H, Tan H K 2011 J. Appl. Phys. 110 033904Google Scholar

    [24]

    Jeong J, Endoh T 2017 Jpn. J. Appl. Phys. 56 04CE09Google Scholar

    [25]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [26]

    Kazemi M, Rowlands G E, Ipek E, Buhrman R A, Friedman E G 2016 IEEE T. Electron. Dev. 63 848Google Scholar

    [27]

    Lee H, Lee A, Wang S D, Ebrahimi F, Gupta P, Amiri P K, Wang K L 2018 IEEE T. Magn. 54 1Google Scholar

    [28]

    Kang W, Ran Y, Zhang Y G, Lü W F, Zhao W S 2017 IEEE T. Nanotechnol. 16 387Google Scholar

    [29]

    王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌 2023 物理学报 72 087202Google Scholar

    Wang R X, Zeng Y H, Zhao J L, Li L, Xiao Y C 2023 Acta Phys. Sin. 72 087202Google Scholar

    [30]

    Legrand W, Ramaswamy R, Mishra R, Yang H 2015 Phys. Rev. Appl. 3 064012Google Scholar

    [31]

    金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟 2020 物理学报 69 198502Google Scholar

    Jin D Y, Chen H, Wang Y, Zhang W R, Na W C, Guo B, Wu L, Yang S M, Sun S 2020 Acta Phys. Sin. 69 198502Google Scholar

    [32]

    金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣 2022 物理学报 71 107501Google Scholar

    Jin D Y, Cao L M, Wang Y, Jia X X, Pan Y A, Zhou Y X, Lei X, Liu Y Y, Yang Y Q, Zhang W R 2022 Acta Phys. Sin. 71 107501Google Scholar

    [33]

    Rata A D, Braak H, Bürgler D E, Schneider C M 2007 Appl. Phys. Lett. 90 162512Google Scholar

    [34]

    Gajek M, Nowak J J, Sun J Z, Trouilloud P L, O’ sullivan E J, Abraham D W, Gaidis M C, Hu G, Brown S, Zhu Y, Robertazzi R P, Gallagher W J, Worledge D C 2012 Appl. Phys. Lett. 100 132408Google Scholar

  • [1] Ji Hui-Hui, Gao Xing-Guo, Li Zhi-Lan. Dimensionality driven exchange coupling effect in cuprate-manganite superlattices. Acta Physica Sinica, 2024, 73(21): 216102. doi: 10.7498/aps.73.20240849
    [2] Wei Hao-Ming, Zhang Ying, Zhang Zhou, Wu Yang-Qing, Cao Bing-Qiang. Influence of polarity compensation on exchange bias field in LaMnO3/LaNiO3 superlattices. Acta Physica Sinica, 2022, 71(15): 156801. doi: 10.7498/aps.71.20220365
    [3] Zhu Zhao-Zhao, Feng Zheng, Cai Jian-Wang. Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [4] Jin Dong-Yue, Cao Lu-Ming, Wang You, Jia Xiao-Xue, Pan Yong-An, Zhou Yu-Xin, Lei Xin, Liu Yuan-Yuan, Yang Ying-Qi, Zhang Wan-Rong. Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application. Acta Physica Sinica, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [5] Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211831
    [6] Jin Dong-Yue, Chen Hu, Wang You, Zhang Wan-Rong, Na Wei-Cong, Guo Bin, Wu Ling, Yang Shao-Meng, Sun Sheng. Process deviation based electrical model of voltage controlled magnetic anisotropy magnetic tunnel junction and its application in read/write circuits. Acta Physica Sinica, 2020, 69(19): 198502. doi: 10.7498/aps.69.20200228
    [7] Tang Hua-Lian, Xu Bei-Lei, Zhuang Yi-Qi, Zhang Li, Li Cong. Distribution characteristic of p-channel metal-oxide-semiconductor negative bias temperature instability effect under process variations. Acta Physica Sinica, 2016, 65(16): 168502. doi: 10.7498/aps.65.168502
    [8] Liu Kui-Li, Zhou Si-Hua, Chen Song-Ling. Exchange bias tuning of metal ions doped in CuO nanocomposites. Acta Physica Sinica, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [9] Wei Ji-Zhou, Zhang Ming, Deng Hao-Liang, Chu Shang-Jie, Du Min-Yong, Yan Hui. Preparation and exchange bias effects of Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3 heterostructures. Acta Physica Sinica, 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [10] Luo Yi, Zhao Guo-Ping, Yang Hai-Tao, Song Ning-Ning, Ren Xiao, Ding Hao-Feng, Cheng Zhao-Hua. Exchange bias effect in single crystalline phase MnO nanoparticles. Acta Physica Sinica, 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [11] Zhang Hong-Wu, Zhou Wen-Ping, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng. Magnetic field-induced martensitic transformation, superspin glass and exchange bias in Heusler alloys NiCoMnSn. Acta Physica Sinica, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [12] Yan Jing, Qi Xian-Jin, Wang Yin-Gang. Influence of annealing on thermal stability of IrMn-based magnetic tunnel juctions. Acta Physica Sinica, 2011, 60(8): 088106. doi: 10.7498/aps.60.088106
    [13] Tian Hong-Yu, Hu Jing-Guo, Xu Xiao-Yong. The influence of the cooling field on the exchange bias in ferromagnet/antiferromagnet bilayers system. Acta Physica Sinica, 2009, 58(4): 2757-2761. doi: 10.7498/aps.58.2757
    [14] Xu Xiao-Yong, Pan Jing, Hu Jing-Guo. Configuration of the antiferromagnetic magnetization and the exchange anisotropy in exchange-biased bilayers. Acta Physica Sinica, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [15] Pan Jing, Ma Mei, Zhou Lan, Hu Jing-Guo. Ferromagnetic resonance in ferromagnetic/antiferromagnetic bilayers under the stress field. Acta Physica Sinica, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [16] Zhai Zhong-Hai, Teng Jiao, Li Bao-He, Wang Li-Jin, Yu Guang-Hua, Zhu Feng-Wu. Exchange bias with perpendicular anisotropy in (Pt/Co)n/FeMn multilayers. Acta Physica Sinica, 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [17] Pan Jing, Tao Yong-Chun, Hu Jing-Guo. The exchange bias in ferromagnetic/antiferro-magnetic bilayers under the stress field. Acta Physica Sinica, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [18] Teng Jiao, Cai Jian-Wang, Xiong Xiao-Tao, Lai Wu-Yan, Zhu Feng-Wu. The establishment and thermal stability of exchange bias in NiFe/FeMn bilayers. Acta Physica Sinica, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [19] Li Ming-Hua, Yu Guang-Hua, He Ge, Zhu Feng-Wu, Lai Wu-Yan. . Acta Physica Sinica, 2002, 51(12): 2854-2857. doi: 10.7498/aps.51.2854
    [20] JING CHAO, JIN XIAO-FENG, DONG GUO-SHENG, GONG XIAO-YAN, YU LI-MING, ZHENG WEI-MIN. EXCHANGE BIASING IN MOLECULAR-BEAM-EPITAXY-GROWN Fe/Fe50Mn50 BILAYERS. Acta Physica Sinica, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
Metrics
  • Abstract views:  3306
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2023
  • Accepted Date:  07 August 2023
  • Available Online:  08 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回