Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Variational analysis and AI algorithm implementation of free energy landscapes of molecular system

Du Bo-Chuan Tian Pu

Citation:

Variational analysis and AI algorithm implementation of free energy landscapes of molecular system

Du Bo-Chuan, Tian Pu
PDF
HTML
Get Citation
  • Accurate description of the free energy landscape (FES) is the basis for understanding complex molecular systems, and for further realizing molecular design, manufacture and industrialization. Major challenges include multiple metastable states, which usually are separated by high potential barriers and are not linearly separable, and may exist at multiple levels of time and spatial scales. Consequently FES is not suitable for analytical analysis and brute force simulation. To address these challenges, many enhanced sampling methods have been developed. However, utility of them usually involves many empirical choices, which hinders research advancement, and also makes error control very unimportant. Although variational calculus has been widely applied and achieved great success in physics, engineering and statistics, its application in complex molecular systems has just begun with the development of neural networks. This brief review is to summarize the background, major developments, current limitations, and prospects of applying variation in this field. It is hoped to facilitate the AI algorithm development for complex molecular systems in general, and to promote the further methodological development in this line of research in particular.
      Corresponding author: Tian Pu, tianpu@jlu.edu.cn
    • Funds: Project supported by the Interdisciplinary Integration and Innovation Project of JLU, China (Grant No. JLUXKJC2021ZZ05).
    [1]

    Thomas C, Tampe R 2020 Annu. Rev. Biochem. 89 605Google Scholar

    [2]

    Jiang F, Doudna J A 2017 Annu. Rev. Biophys. 46 505Google Scholar

    [3]

    Latorraca N R, Venkatakrishnan A J, Dror R O 2017 Chem. Rev. 117 139Google Scholar

    [4]

    Wei G, Xi W, Nussinov R, Ma B 2016 Chem. Rev. 116 6516Google Scholar

    [5]

    Dignon G L, Best R B, Mittal J 2020 Annu. Rev. Phys. Chem. 71 53Google Scholar

    [6]

    Choi J M, Holehouse A S, Pappu R V 2020 Annu. Rev. Biophys. 49 107Google Scholar

    [7]

    Sponer J, Bussi G, Krepl M, et al. 2018 Chem. Rev. 118 4177Google Scholar

    [8]

    Bussi G, Laio A 2020 Nat. Rev. Phys. 2 200Google Scholar

    [9]

    Mobley D L, Gilson M K 2017 Annu. Rev. Biophys. 46 531Google Scholar

    [10]

    Rodnina M V, Beringer M, Wintermeyer W 2007 Trends Biochem. Sci. 32 20Google Scholar

    [11]

    Bernardi R C, Melo M C R, Schulten K 2015 Biochim. Biophys. Acta 1850 872Google Scholar

    [12]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141Google Scholar

    [13]

    Faraldo-Gomez J D, Roux B 2007 J. Comput. Chem. 28 1634Google Scholar

    [14]

    Laio A, Parrinello M 2002 Proc. Natl. Acad. Sci. U. S. A. 99 12562Google Scholar

    [15]

    Barducci A, Bussi G, Parrinello M 2008 Phys. Rev. Lett. 100 020603Google Scholar

    [16]

    Maragliano L, Vanden-Eijnden E 2006 Chem. Phys. Lett. 426 168Google Scholar

    [17]

    Abrams J B, Tuckerman M E 2008 J. Phys. Chem. B 112 15742Google Scholar

    [18]

    Darve E, Rodriguez-Gomez D, Pohorille A 2008 J. Chem. Phys. 128 144120Google Scholar

    [19]

    Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187Google Scholar

    [20]

    Carter E A, Ciccotti G, Hynes J T, Kapral R 1989 Chem. Phys. Lett. 156 472Google Scholar

    [21]

    Sprik M, Ciccotti G 1998 J. Chem. Phys. 109 7737Google Scholar

    [22]

    Zwanzig R W 1954 J. Chem. Phys. 22 1420Google Scholar

    [23]

    Kirkwood J G 1935 J. Chem. Phys. 3 300Google Scholar

    [24]

    Oberhofer H, Dellago C, Geissler P L 2005 J. Phys. Chem. B 109 6902Google Scholar

    [25]

    Chen M, Cuendet M A, Tuckerman M E 2012 J. Chem. Phys. 137 024102Google Scholar

    [26]

    Lesage A, Lelievre T, Stoltz G, Henin J 2017 J. Phys. Chem. B 121 3676Google Scholar

    [27]

    Tribello G A, Gasparotto P 2019 Front. Mol. Biosci. 6 46Google Scholar

    [28]

    Comer J, Gumbart J C, Henin J, Lelievre T, Pohorille A, Chipot C 2015 J. Phys. Chem. B 119 1129Google Scholar

    [29]

    Darve E, Pohorille A 2001 J. Chem. Phys. 115 9169Google Scholar

    [30]

    Huber T, Torda A E, van Gunsteren W F 1994 J. Comput. Aided. Mol. Des. 8 695Google Scholar

    [31]

    Wang F, Landau D P 2001 Phys. Rev. Lett. 86 2050Google Scholar

    [32]

    Valsson O, Tiwary P, Parrinello M 2016 Annu. Rev. Phys. Chem. 67 159Google Scholar

    [33]

    Husic B E, Pande V S 2018 J. Am. Chem. Soc. 140 2386Google Scholar

    [34]

    Dellago C, Bolhuis P G, Csajka F S, Chandler D 1998 J. Chem. Phys. 108 1964Google Scholar

    [35]

    Bolhuis P G, Chandler D, Dellago C, Geissler P L 2002 Annu. Rev. Phys. Chem. 53 291Google Scholar

    [36]

    van Erp T S, Moroni D, Bolhuis P G 2003 J. Chem. Phys. 118 7762Google Scholar

    [37]

    Moroni D, Bolhuis P G, van Erp T S 2004 J. Chem. Phys. 120 4055Google Scholar

    [38]

    Hummer G 2004 J. Chem. Phys. 120 516Google Scholar

    [39]

    Bolhuis P G, Swenson D W H 2021 Front. Data Comput. 4 2000237Google Scholar

    [40]

    E W, Vanden-Eijnden E 2010 Annu. Rev. Phys. Chem. 61 391Google Scholar

    [41]

    Sarich M, Banisch R, Hartmann C, Schütte C 2013 Entropy 16 258Google Scholar

    [42]

    Cybenko G 1989 Math. Control Signal Syst. 2 303Google Scholar

    [43]

    Leshno M, Lin V Y, Pinkus A, Schocken S 1993 Neural Netw. 6 861Google Scholar

    [44]

    Zhou D X 2020 Appl. Comput. Harmon. Anal. 48 787Google Scholar

    [45]

    Alzubaidi L, Zhang J, Humaidi A J, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaria J, Fadhel M A, Al-Amidie M, Farhan L 2021 J. Big Data 8 53Google Scholar

    [46]

    He K, Zhang X, Ren S, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, USA, 27–30 June, 2016 pp770–778

    [47]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I 2017 Advances in Neural Information Processing Systems Long Beach, USA, December 4–9, 2017

    [48]

    Ho J, Jain A, Abbeel P 2020 Advances in Neural Information Processing Systems Virtual pp6840–6851

    [49]

    Baydin A G, Pearlmutter B A, Radul A A, Siskind J M 2018 J. Mach. Learn. Res. 18 1Google Scholar

    [50]

    Rumelhart D, Hinton G, Williams R 1986 Nature 323 533Google Scholar

    [51]

    Michelucci U 2022 arXiv: 1312.6114 [stat. ML]

    [52]

    Kingma D P, Welling M 2019 arXiv: 1906.02691 [cs. LG]

    [53]

    Waterfall J J, Casey F P, Gutenkunst R N, Brown K S, Myers C R, Brouwer P W, Elser V, Sethna J P 2006 Phys. Rev. Lett. 97 150601Google Scholar

    [54]

    Rumelhart D E, Hinton G E, Williams R J (Anderson J A, Rosenfeld E, ed) 1988 Neurocomputing (Vol. 1) (Cambridge: The MIT Press) pp696–700

    [55]

    Arfken G B, Weber H J, Harris F E 2011 Mathematical Methods for Physicists: A Comprehensive Guide (Cambridge: Academic Press

    [56]

    Blei D M, Kucukelbir A, McAuliffe J D 2017 J. Am. Stat. Assoc. 112 859Google Scholar

    [57]

    Ganguly A, Earp S W 2021 arXiv: 2108.13083 [cs. LG]

    [58]

    Marquardt D W 1963 J. Soc. Ind. Appl. Math. 11 431Google Scholar

    [59]

    Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L 2019 Advances in Neural Information Processing Systems pp8026–8037

    [60]

    Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M 2016 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) Savannah, GA, USA, November 2–4, 2016 pp265–283

    [61]

    Ma Y, Yu D, Wu T, Wang H 2019 Front. Data Comput. 1 105Google Scholar

    [62]

    Hadji I, Wildes R P 2018 arXiv: 1803.08834 [cs. CV]

    [63]

    Ghorbani M, Prasad S, Klauda J B, Brooks B R 2022 J. Chem. Phys. 156 184103Google Scholar

    [64]

    Mardt A, Hempel T, Clementi C, Noe F 2022 Nat. Commun. 13 7101Google Scholar

    [65]

    Perez-Hernandez G, Paul F, Giorgino T, De Fabritiis G, Noe F 2013 J. Chem. Phys. 139 015102Google Scholar

    [66]

    Wu H, Noé F 2019 J. Nonlinear Sci. 30 23Google Scholar

    [67]

    Mardt A, Pasquali L, Wu H, Noe F 2018 Nat. Commun. 9 5Google Scholar

    [68]

    Kleiman D E, Shukla D 2023 J. Chem. Theory Comput. 19 4377Google Scholar

    [69]

    Chen H, Roux B, Chipot C 2023 J. Chem. Theory Comput. 19 4414Google Scholar

    [70]

    Schütte C, Fischer A, Huisinga W, Deuflhard P 1999 J. Comput. Phys. 151 146Google Scholar

    [71]

    He Z, Chipot C, Roux B 2022 J. Phys. Chem. Lett. 13 9263Google Scholar

    [72]

    Bonati L, Zhang Y Y, Parrinello M 2019 Proc. Natl. Acad. Sci. U. S. A. 116 17641Google Scholar

    [73]

    Bittracher A, Mollenhauer M, Koltai P, Schütte C 2023 Multiscale Model. Simul. 21 449Google Scholar

    [74]

    Wang Y, Ribeiro J M L, Tiwary P 2019 Nat. Commun. 10 3573Google Scholar

    [75]

    Beyerle E R, Mehdi S, Tiwary P 2022 J. Phys. Chem. B 126 3950Google Scholar

    [76]

    Zhang J, Lei Y K, Yang Y I, Gao Y Q 2020 J. Chem. Phys. 153 174115Google Scholar

    [77]

    Kingma D P, Welling M 2013 arXiv: 1312.6114 [stat. ML]

    [78]

    Tiwary P, Berne B J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 2839Google Scholar

    [79]

    Wu H, Paul F, Wehmeyer C, Noe F 2016 Proc. Natl. Acad. Sci. U. S. A. 113 E3221Google Scholar

    [80]

    Wu H, Mey A S, Rosta E, Noé F 2014 J. Chem. Phys. 141 214106Google Scholar

    [81]

    Chodera J D, Swope W C, Noé F, Prinz J H, Shirts M R, Pande V S 2011 J. Chem. Phys. 134 244107Google Scholar

    [82]

    Prinz J H, Chodera J D, Pande V S, Swope W C, Smith J C, Noe F 2011 J. Chem. Phys. 134 244108Google Scholar

    [83]

    Rosta E, Hummer G 2015 J. Chem. Theory Comput. 11 276Google Scholar

    [84]

    Mey A S, Wu H, Noé F 2014 Phys. Rev. X 4 041018Google Scholar

    [85]

    Hinrichs N S, Pande V S 2007 J. Chem. Phys. 126 244101Google Scholar

    [86]

    Noe F 2008 J. Chem. Phys. 128 244103Google Scholar

    [87]

    Chodera J D, Noé F 2010 J. Chem. Phys. 133 265Google Scholar

    [88]

    Schütt K, Kindermans P J, Sauceda Felix H E, Chmiela S, Tkatchenko A, Müller K R 2017 Advances in Neural Information Processing Systems Long Beach, ACM, USA, 2017 pp991–1001

    [89]

    Husic B E, Charron N E, Lemm D, Wang J, Perez A, Majewski M, Kramer A, Chen Y, Olsson S, de Fabritiis G, Noe F, Clementi C 2020 J. Chem. Phys. 153 194101Google Scholar

    [90]

    Battaglia P W, Hamrick J B, Bapst V, et al. 2018 arXiv: 1806.01261 [stat. ML]

    [91]

    Kipf T N, Welling M 2016 arXiv: 1609.02907 [cs. LG]

    [92]

    Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y 2017 arXiv: 1710.10903 [stat. ML]

    [93]

    Ghorbani M, Prasad S, Klauda J B, Brooks B R 2022 arXiv:2201.04609 [physics.comp-ph]

    [94]

    Hempel T, Del Razo M J, Lee C T, Taylor B C, Amaro R E, Noe F 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2105230118Google Scholar

    [95]

    Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G 2006 J. Chem. Phys. 125 24106Google Scholar

    [96]

    Pan A C, Sezer D, Roux B 2008 J. Phys. Chem. B 112 3432Google Scholar

    [97]

    Weinan E, Ren W, Vanden-Eijnden E 2005 Chem. Phys. Lett. 413 242Google Scholar

    [98]

    Branduardi D, Gervasio F L, Parrinello M 2007 J. Chem. Phys. 126 054103Google Scholar

    [99]

    Leines G D, Ensing B 2012 Phys. Rev. Lett. 109 020601Google Scholar

    [100]

    Invernizzi M, Parrinello M 2020 J. Phys. Chem. Lett. 11 2731Google Scholar

    [101]

    Berezhkovskii A, Szabo A 2005 J. Chem. Phys. 122 14503Google Scholar

    [102]

    Langer J S 1969 Ann. Phys. 54 258Google Scholar

    [103]

    Valsson O, Parrinello M 2014 Phys. Rev. Lett. 113 090601Google Scholar

    [104]

    Bilionis I, Koutsourelakis P S 2012 J. Comput. Phys. 231 3849Google Scholar

    [105]

    Dempster A P, Laird N M, Rubin D B 2018 J. R. Stat. Soc. B 39 1Google Scholar

    [106]

    Bonati L, Piccini G, Parrinello M 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2113533118Google Scholar

    [107]

    Tishby N, Pereira F C, Bialek W 2000 arXiv: physics/0004057 [physics.data-an]

    [108]

    Still S 2014 Entropy 16 968Google Scholar

    [109]

    Song Y, Kingma D P 2021 arXiv: 2101.03288 [cs. LG]

    [110]

    Arjovsky M, Chintala S, Bottou L 2017 International Conference on Machine Learning Sydney pp214–223

    [111]

    Huang Y P, Xia Y, Yang L, Wei J, Yang Y I, Gao Y Q 2021 Chin. J. Chem. 40 160Google Scholar

    [112]

    Ribeiro J M L, Bravo P, Wang Y, Tiwary P 2018 J. Chem. Phys. 149 072301Google Scholar

    [113]

    Chen M 2021 Eur. Phys. J. B 94 211Google Scholar

    [114]

    Qiu Y, O'Connor M S, Xue M, Liu B, Huang X 2023 J. Chem. Theory Comput. 19 4728Google Scholar

    [115]

    Monroe J I, Shen V K 2022 J. Chem. Theory Comput. 18 3622Google Scholar

    [116]

    Ma A, Dinner A R 2005 J. Phys. Chem. B 109 6769Google Scholar

    [117]

    Chen W, Ferguson A L 2018 J. Comput. Chem. 39 2079Google Scholar

    [118]

    Chen H, Liu H, Feng H, Fu H, Cai W, Shao X, Chipot C 2022 J. Chem. Inf. Model. 62 1Google Scholar

    [119]

    Wehmeyer C, Noe F 2018 J. Chem. Phys. 148 241703Google Scholar

    [120]

    Williams M O, Kevrekidis I G, Rowley C W 2015 J. Nonlinear Sci. 25 1307Google Scholar

    [121]

    Mezić I 2005 Nonlinear Dyn. 41 309Google Scholar

    [122]

    H. Tu J, W. Rowley C, M. Luchtenburg D, L. Brunton S, Nathan Kutz J 2014 J. Comput. Dynam. 1 391Google Scholar

    [123]

    Zhang J, Chen M 2018 Phys. Rev. Lett. 121 010601Google Scholar

    [124]

    Rydzewski J, Valsson O 2021 J. Phys. Chem. A 125 6286Google Scholar

    [125]

    Belkacemi Z, Gkeka P, Lelievre T, Stoltz G 2022 J. Chem. Theory Comput. 18 59Google Scholar

    [126]

    Kikutsuji T, Mori Y, Okazaki K I, Mori T, Kim K, Matubayasi N 2022 J. Chem. Phys. 156 154108Google Scholar

    [127]

    Sun L, Vandermause J, Batzner S, Xie Y, Clark D, Chen W, Kozinsky B 2022 J Chem Theory Comput 18 2341Google Scholar

    [128]

    Wang Y, Lamim Ribeiro J M, Tiwary P 2020 Curr. Opin. Struct. Biol. 61 139Google Scholar

    [129]

    Jung H, Covino R, Arjun A, Leitold C, Dellago C, Bolhuis P G, Hummer G 2023 Nat. Comput. Sci. 3 334Google Scholar

    [130]

    Zhao L, Wang L 2023 Chin. Phys. Lett. 40 120201Google Scholar

    [131]

    Wu T, He S, Liu J, Sun S, Liu K, Han Q L, Tang Y 2023 IEEE-CAA J. Automatica Sin. 10 1122Google Scholar

    [132]

    Janson G, Valdes-Garcia G, Heo L, Feig M 2023 Nat. Commun. 14 774Google Scholar

    [133]

    Naveed H, Ullah Khan A, Qiu S, Saqib M, Anwar S, Usman M, Akhtar N, Barnes N, Mian A 2023 arXiv: 2307.06435 [cs. CL]

  • 图 1  自编码器神经网络架构示意图, 蓝色部分表示编码器(encoder)函数$ f(\cdot) $, 橙色部分表示解码器(decoder)函数$ g(\cdot) $, 维度最低的绿色表示中间隐藏层(z), 对自编码器, 损失函数是输出($ {\tilde{\boldsymbol{x}}}_{i} $)与输入$ {\boldsymbol{x}}_{i} $的差别的函数(也可以加正则化项, 如参考文献[58] (5)式所示), 每一个输入数据点对应隐藏层空间的一个点

    Figure 1.  Schematic representation of an auto-encoder neural network. The blue part on the left represents the encoder, the orange part on the right represents the decoder, and the middle green layer is the hidden layer (z). The loss is always a function of the difference between the input and the output vectors ($ {\boldsymbol{x}}_{i} $ and $ {\tilde{\boldsymbol{x}}}_{i} $), one may add some form of regularization when necessary (e.g. Eq. (5) in Ref. [58]).

    图 2  (a) VAMPnets构建VAMP打分((10)式)的神经网络总体架构示意图; (b)丙氨酸二肽轨迹分析实例中的典型神经网络架构, 各层神经元数目为 32-22-16-9-6, 前两层使用10%的dropout, 除最后的softmax层外, 其余各层激活函数均使用Relu[67]

    Figure 2.  (a) Schematic illustration of VAMP score construction from VAMPnets (see Eq. (10)). (b) A typical neural network architecture for analine dipeptide analysis, with the number of neurons being 32-22-16-9-6 for five layers. The first two layers utilized a 10% dropout. Relu was selected as the activation function for all layers except the last softmax layer[67].

    表 1  复杂分子体系低维隐空间的变分方法简要总结, 表中所述集合空间问题类别是指引言中提到的三类问题

    Table 1.  A brief summary of variational methods for low-dimensional hidden spaces in complex molecular systems. The category of collective space problems mentioned in the table refers to the three types of problems defined in the introduction.

    变分方法 主要目标 关注的集合空间
    问题类别
    特点或主要局限
    频谱分
    解分析
    基组线
    性组合
    给定构象子状态空间划分下求解集合变量和子态间转换速率 第1类、第2类 马尔可夫假设与线性基组局限, 需要人工划分构象空间子状态
    神经网
    络实现
    从给定轨迹中直接求解子态划分和对应转换速率 第2类 马尔可夫假设, 没有解析表示的特征函数, 需要人工调整架构测试不同聚类数量
    自由能垒跨越概率时间关
    联函数
    基组线
    性组合
    在选定基组空间的线性组合基础上求解状态转换路径和其上的自由能垒跨越概率 第3类 基组线性组合局限, 需要定义始末态
    神经网
    络实现
    在和给定始末态一致的神经网络函数空间求解状态转换路径和其上的自由能垒跨越概率 第3类 需要定义始末态
    基于偏置
    势变分
    基组线
    性组合
    利用偏置势增强采样在基组线性组合空间快速求解给定集合变量方向自由能主要能量谷地 第2类 泛函受基组选择限制
    神经网
    络实现
    利用偏置势增强采样在神经网络函数空间快速求解给定集合变量方向自由能主要能量谷地 第2类 泛函导数求解的采样需求导致偏置势(和对应自由能)的精度紧密相关, 收敛受KL散度非对称性限制
    Lumpability 和
    Decomposability
    优化集合变量 第1类 有明确误差控制, 方差取决于隐空间维度, 两种定义的一致性要求可逆过程
    信息瓶颈模型 求解信息瓶颈对应集合空间CV表示, 并利用偏置势加速自由能面采样 第2类 线性编码过程假设局限
    变分自适应 结合粗粒化信息加速采样求解自由能面 第2类 总体架构较为复杂
    变分自编码器 通过集合变量空间加速采样求解自由能面和聚类转化路径 第2类、第3类 特别关注隐空间
    DownLoad: CSV
  • [1]

    Thomas C, Tampe R 2020 Annu. Rev. Biochem. 89 605Google Scholar

    [2]

    Jiang F, Doudna J A 2017 Annu. Rev. Biophys. 46 505Google Scholar

    [3]

    Latorraca N R, Venkatakrishnan A J, Dror R O 2017 Chem. Rev. 117 139Google Scholar

    [4]

    Wei G, Xi W, Nussinov R, Ma B 2016 Chem. Rev. 116 6516Google Scholar

    [5]

    Dignon G L, Best R B, Mittal J 2020 Annu. Rev. Phys. Chem. 71 53Google Scholar

    [6]

    Choi J M, Holehouse A S, Pappu R V 2020 Annu. Rev. Biophys. 49 107Google Scholar

    [7]

    Sponer J, Bussi G, Krepl M, et al. 2018 Chem. Rev. 118 4177Google Scholar

    [8]

    Bussi G, Laio A 2020 Nat. Rev. Phys. 2 200Google Scholar

    [9]

    Mobley D L, Gilson M K 2017 Annu. Rev. Biophys. 46 531Google Scholar

    [10]

    Rodnina M V, Beringer M, Wintermeyer W 2007 Trends Biochem. Sci. 32 20Google Scholar

    [11]

    Bernardi R C, Melo M C R, Schulten K 2015 Biochim. Biophys. Acta 1850 872Google Scholar

    [12]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141Google Scholar

    [13]

    Faraldo-Gomez J D, Roux B 2007 J. Comput. Chem. 28 1634Google Scholar

    [14]

    Laio A, Parrinello M 2002 Proc. Natl. Acad. Sci. U. S. A. 99 12562Google Scholar

    [15]

    Barducci A, Bussi G, Parrinello M 2008 Phys. Rev. Lett. 100 020603Google Scholar

    [16]

    Maragliano L, Vanden-Eijnden E 2006 Chem. Phys. Lett. 426 168Google Scholar

    [17]

    Abrams J B, Tuckerman M E 2008 J. Phys. Chem. B 112 15742Google Scholar

    [18]

    Darve E, Rodriguez-Gomez D, Pohorille A 2008 J. Chem. Phys. 128 144120Google Scholar

    [19]

    Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187Google Scholar

    [20]

    Carter E A, Ciccotti G, Hynes J T, Kapral R 1989 Chem. Phys. Lett. 156 472Google Scholar

    [21]

    Sprik M, Ciccotti G 1998 J. Chem. Phys. 109 7737Google Scholar

    [22]

    Zwanzig R W 1954 J. Chem. Phys. 22 1420Google Scholar

    [23]

    Kirkwood J G 1935 J. Chem. Phys. 3 300Google Scholar

    [24]

    Oberhofer H, Dellago C, Geissler P L 2005 J. Phys. Chem. B 109 6902Google Scholar

    [25]

    Chen M, Cuendet M A, Tuckerman M E 2012 J. Chem. Phys. 137 024102Google Scholar

    [26]

    Lesage A, Lelievre T, Stoltz G, Henin J 2017 J. Phys. Chem. B 121 3676Google Scholar

    [27]

    Tribello G A, Gasparotto P 2019 Front. Mol. Biosci. 6 46Google Scholar

    [28]

    Comer J, Gumbart J C, Henin J, Lelievre T, Pohorille A, Chipot C 2015 J. Phys. Chem. B 119 1129Google Scholar

    [29]

    Darve E, Pohorille A 2001 J. Chem. Phys. 115 9169Google Scholar

    [30]

    Huber T, Torda A E, van Gunsteren W F 1994 J. Comput. Aided. Mol. Des. 8 695Google Scholar

    [31]

    Wang F, Landau D P 2001 Phys. Rev. Lett. 86 2050Google Scholar

    [32]

    Valsson O, Tiwary P, Parrinello M 2016 Annu. Rev. Phys. Chem. 67 159Google Scholar

    [33]

    Husic B E, Pande V S 2018 J. Am. Chem. Soc. 140 2386Google Scholar

    [34]

    Dellago C, Bolhuis P G, Csajka F S, Chandler D 1998 J. Chem. Phys. 108 1964Google Scholar

    [35]

    Bolhuis P G, Chandler D, Dellago C, Geissler P L 2002 Annu. Rev. Phys. Chem. 53 291Google Scholar

    [36]

    van Erp T S, Moroni D, Bolhuis P G 2003 J. Chem. Phys. 118 7762Google Scholar

    [37]

    Moroni D, Bolhuis P G, van Erp T S 2004 J. Chem. Phys. 120 4055Google Scholar

    [38]

    Hummer G 2004 J. Chem. Phys. 120 516Google Scholar

    [39]

    Bolhuis P G, Swenson D W H 2021 Front. Data Comput. 4 2000237Google Scholar

    [40]

    E W, Vanden-Eijnden E 2010 Annu. Rev. Phys. Chem. 61 391Google Scholar

    [41]

    Sarich M, Banisch R, Hartmann C, Schütte C 2013 Entropy 16 258Google Scholar

    [42]

    Cybenko G 1989 Math. Control Signal Syst. 2 303Google Scholar

    [43]

    Leshno M, Lin V Y, Pinkus A, Schocken S 1993 Neural Netw. 6 861Google Scholar

    [44]

    Zhou D X 2020 Appl. Comput. Harmon. Anal. 48 787Google Scholar

    [45]

    Alzubaidi L, Zhang J, Humaidi A J, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaria J, Fadhel M A, Al-Amidie M, Farhan L 2021 J. Big Data 8 53Google Scholar

    [46]

    He K, Zhang X, Ren S, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, USA, 27–30 June, 2016 pp770–778

    [47]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I 2017 Advances in Neural Information Processing Systems Long Beach, USA, December 4–9, 2017

    [48]

    Ho J, Jain A, Abbeel P 2020 Advances in Neural Information Processing Systems Virtual pp6840–6851

    [49]

    Baydin A G, Pearlmutter B A, Radul A A, Siskind J M 2018 J. Mach. Learn. Res. 18 1Google Scholar

    [50]

    Rumelhart D, Hinton G, Williams R 1986 Nature 323 533Google Scholar

    [51]

    Michelucci U 2022 arXiv: 1312.6114 [stat. ML]

    [52]

    Kingma D P, Welling M 2019 arXiv: 1906.02691 [cs. LG]

    [53]

    Waterfall J J, Casey F P, Gutenkunst R N, Brown K S, Myers C R, Brouwer P W, Elser V, Sethna J P 2006 Phys. Rev. Lett. 97 150601Google Scholar

    [54]

    Rumelhart D E, Hinton G E, Williams R J (Anderson J A, Rosenfeld E, ed) 1988 Neurocomputing (Vol. 1) (Cambridge: The MIT Press) pp696–700

    [55]

    Arfken G B, Weber H J, Harris F E 2011 Mathematical Methods for Physicists: A Comprehensive Guide (Cambridge: Academic Press

    [56]

    Blei D M, Kucukelbir A, McAuliffe J D 2017 J. Am. Stat. Assoc. 112 859Google Scholar

    [57]

    Ganguly A, Earp S W 2021 arXiv: 2108.13083 [cs. LG]

    [58]

    Marquardt D W 1963 J. Soc. Ind. Appl. Math. 11 431Google Scholar

    [59]

    Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L 2019 Advances in Neural Information Processing Systems pp8026–8037

    [60]

    Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M 2016 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) Savannah, GA, USA, November 2–4, 2016 pp265–283

    [61]

    Ma Y, Yu D, Wu T, Wang H 2019 Front. Data Comput. 1 105Google Scholar

    [62]

    Hadji I, Wildes R P 2018 arXiv: 1803.08834 [cs. CV]

    [63]

    Ghorbani M, Prasad S, Klauda J B, Brooks B R 2022 J. Chem. Phys. 156 184103Google Scholar

    [64]

    Mardt A, Hempel T, Clementi C, Noe F 2022 Nat. Commun. 13 7101Google Scholar

    [65]

    Perez-Hernandez G, Paul F, Giorgino T, De Fabritiis G, Noe F 2013 J. Chem. Phys. 139 015102Google Scholar

    [66]

    Wu H, Noé F 2019 J. Nonlinear Sci. 30 23Google Scholar

    [67]

    Mardt A, Pasquali L, Wu H, Noe F 2018 Nat. Commun. 9 5Google Scholar

    [68]

    Kleiman D E, Shukla D 2023 J. Chem. Theory Comput. 19 4377Google Scholar

    [69]

    Chen H, Roux B, Chipot C 2023 J. Chem. Theory Comput. 19 4414Google Scholar

    [70]

    Schütte C, Fischer A, Huisinga W, Deuflhard P 1999 J. Comput. Phys. 151 146Google Scholar

    [71]

    He Z, Chipot C, Roux B 2022 J. Phys. Chem. Lett. 13 9263Google Scholar

    [72]

    Bonati L, Zhang Y Y, Parrinello M 2019 Proc. Natl. Acad. Sci. U. S. A. 116 17641Google Scholar

    [73]

    Bittracher A, Mollenhauer M, Koltai P, Schütte C 2023 Multiscale Model. Simul. 21 449Google Scholar

    [74]

    Wang Y, Ribeiro J M L, Tiwary P 2019 Nat. Commun. 10 3573Google Scholar

    [75]

    Beyerle E R, Mehdi S, Tiwary P 2022 J. Phys. Chem. B 126 3950Google Scholar

    [76]

    Zhang J, Lei Y K, Yang Y I, Gao Y Q 2020 J. Chem. Phys. 153 174115Google Scholar

    [77]

    Kingma D P, Welling M 2013 arXiv: 1312.6114 [stat. ML]

    [78]

    Tiwary P, Berne B J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 2839Google Scholar

    [79]

    Wu H, Paul F, Wehmeyer C, Noe F 2016 Proc. Natl. Acad. Sci. U. S. A. 113 E3221Google Scholar

    [80]

    Wu H, Mey A S, Rosta E, Noé F 2014 J. Chem. Phys. 141 214106Google Scholar

    [81]

    Chodera J D, Swope W C, Noé F, Prinz J H, Shirts M R, Pande V S 2011 J. Chem. Phys. 134 244107Google Scholar

    [82]

    Prinz J H, Chodera J D, Pande V S, Swope W C, Smith J C, Noe F 2011 J. Chem. Phys. 134 244108Google Scholar

    [83]

    Rosta E, Hummer G 2015 J. Chem. Theory Comput. 11 276Google Scholar

    [84]

    Mey A S, Wu H, Noé F 2014 Phys. Rev. X 4 041018Google Scholar

    [85]

    Hinrichs N S, Pande V S 2007 J. Chem. Phys. 126 244101Google Scholar

    [86]

    Noe F 2008 J. Chem. Phys. 128 244103Google Scholar

    [87]

    Chodera J D, Noé F 2010 J. Chem. Phys. 133 265Google Scholar

    [88]

    Schütt K, Kindermans P J, Sauceda Felix H E, Chmiela S, Tkatchenko A, Müller K R 2017 Advances in Neural Information Processing Systems Long Beach, ACM, USA, 2017 pp991–1001

    [89]

    Husic B E, Charron N E, Lemm D, Wang J, Perez A, Majewski M, Kramer A, Chen Y, Olsson S, de Fabritiis G, Noe F, Clementi C 2020 J. Chem. Phys. 153 194101Google Scholar

    [90]

    Battaglia P W, Hamrick J B, Bapst V, et al. 2018 arXiv: 1806.01261 [stat. ML]

    [91]

    Kipf T N, Welling M 2016 arXiv: 1609.02907 [cs. LG]

    [92]

    Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y 2017 arXiv: 1710.10903 [stat. ML]

    [93]

    Ghorbani M, Prasad S, Klauda J B, Brooks B R 2022 arXiv:2201.04609 [physics.comp-ph]

    [94]

    Hempel T, Del Razo M J, Lee C T, Taylor B C, Amaro R E, Noe F 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2105230118Google Scholar

    [95]

    Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G 2006 J. Chem. Phys. 125 24106Google Scholar

    [96]

    Pan A C, Sezer D, Roux B 2008 J. Phys. Chem. B 112 3432Google Scholar

    [97]

    Weinan E, Ren W, Vanden-Eijnden E 2005 Chem. Phys. Lett. 413 242Google Scholar

    [98]

    Branduardi D, Gervasio F L, Parrinello M 2007 J. Chem. Phys. 126 054103Google Scholar

    [99]

    Leines G D, Ensing B 2012 Phys. Rev. Lett. 109 020601Google Scholar

    [100]

    Invernizzi M, Parrinello M 2020 J. Phys. Chem. Lett. 11 2731Google Scholar

    [101]

    Berezhkovskii A, Szabo A 2005 J. Chem. Phys. 122 14503Google Scholar

    [102]

    Langer J S 1969 Ann. Phys. 54 258Google Scholar

    [103]

    Valsson O, Parrinello M 2014 Phys. Rev. Lett. 113 090601Google Scholar

    [104]

    Bilionis I, Koutsourelakis P S 2012 J. Comput. Phys. 231 3849Google Scholar

    [105]

    Dempster A P, Laird N M, Rubin D B 2018 J. R. Stat. Soc. B 39 1Google Scholar

    [106]

    Bonati L, Piccini G, Parrinello M 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2113533118Google Scholar

    [107]

    Tishby N, Pereira F C, Bialek W 2000 arXiv: physics/0004057 [physics.data-an]

    [108]

    Still S 2014 Entropy 16 968Google Scholar

    [109]

    Song Y, Kingma D P 2021 arXiv: 2101.03288 [cs. LG]

    [110]

    Arjovsky M, Chintala S, Bottou L 2017 International Conference on Machine Learning Sydney pp214–223

    [111]

    Huang Y P, Xia Y, Yang L, Wei J, Yang Y I, Gao Y Q 2021 Chin. J. Chem. 40 160Google Scholar

    [112]

    Ribeiro J M L, Bravo P, Wang Y, Tiwary P 2018 J. Chem. Phys. 149 072301Google Scholar

    [113]

    Chen M 2021 Eur. Phys. J. B 94 211Google Scholar

    [114]

    Qiu Y, O'Connor M S, Xue M, Liu B, Huang X 2023 J. Chem. Theory Comput. 19 4728Google Scholar

    [115]

    Monroe J I, Shen V K 2022 J. Chem. Theory Comput. 18 3622Google Scholar

    [116]

    Ma A, Dinner A R 2005 J. Phys. Chem. B 109 6769Google Scholar

    [117]

    Chen W, Ferguson A L 2018 J. Comput. Chem. 39 2079Google Scholar

    [118]

    Chen H, Liu H, Feng H, Fu H, Cai W, Shao X, Chipot C 2022 J. Chem. Inf. Model. 62 1Google Scholar

    [119]

    Wehmeyer C, Noe F 2018 J. Chem. Phys. 148 241703Google Scholar

    [120]

    Williams M O, Kevrekidis I G, Rowley C W 2015 J. Nonlinear Sci. 25 1307Google Scholar

    [121]

    Mezić I 2005 Nonlinear Dyn. 41 309Google Scholar

    [122]

    H. Tu J, W. Rowley C, M. Luchtenburg D, L. Brunton S, Nathan Kutz J 2014 J. Comput. Dynam. 1 391Google Scholar

    [123]

    Zhang J, Chen M 2018 Phys. Rev. Lett. 121 010601Google Scholar

    [124]

    Rydzewski J, Valsson O 2021 J. Phys. Chem. A 125 6286Google Scholar

    [125]

    Belkacemi Z, Gkeka P, Lelievre T, Stoltz G 2022 J. Chem. Theory Comput. 18 59Google Scholar

    [126]

    Kikutsuji T, Mori Y, Okazaki K I, Mori T, Kim K, Matubayasi N 2022 J. Chem. Phys. 156 154108Google Scholar

    [127]

    Sun L, Vandermause J, Batzner S, Xie Y, Clark D, Chen W, Kozinsky B 2022 J Chem Theory Comput 18 2341Google Scholar

    [128]

    Wang Y, Lamim Ribeiro J M, Tiwary P 2020 Curr. Opin. Struct. Biol. 61 139Google Scholar

    [129]

    Jung H, Covino R, Arjun A, Leitold C, Dellago C, Bolhuis P G, Hummer G 2023 Nat. Comput. Sci. 3 334Google Scholar

    [130]

    Zhao L, Wang L 2023 Chin. Phys. Lett. 40 120201Google Scholar

    [131]

    Wu T, He S, Liu J, Sun S, Liu K, Han Q L, Tang Y 2023 IEEE-CAA J. Automatica Sin. 10 1122Google Scholar

    [132]

    Janson G, Valdes-Garcia G, Heo L, Feig M 2023 Nat. Commun. 14 774Google Scholar

    [133]

    Naveed H, Ullah Khan A, Qiu S, Saqib M, Anwar S, Usman M, Akhtar N, Barnes N, Mian A 2023 arXiv: 2307.06435 [cs. CL]

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [3] Yang Ying, Cao Huai-Xin. Two types of neural network representations of quantum mixed states. Acta Physica Sinica, 2023, 72(11): 110301. doi: 10.7498/aps.72.20221905
    [4] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [5] Li Jing, Sun Hao. Tag Z boson jets via convolutional neural networks. Acta Physica Sinica, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [6] Sun Li-Wang, Li Hong, Wang Peng-Jun, Gao He-Bei, Luo Meng-Bo. Recognition of adsorption phase transition of polymer on surface by neural network. Acta Physica Sinica, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [7] Tan Kang-Bo, Lu Hong-Min, Su Tao. Collin variational study of charged conductors' energy in plasma environment. Acta Physica Sinica, 2018, 67(20): 209401. doi: 10.7498/aps.67.20180504
    [8] Tan Kang-Bo, Lu Hong-Min, Guan Qiao, Zhang Guang-Shuo, Chen Chong-Chong. Dissipative variational analysis for bounded dark solitons of electromagnetically induced transparency. Acta Physica Sinica, 2018, 67(6): 064207. doi: 10.7498/aps.67.20172567
    [9] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [10] Li Huan, Wang You-Guo. Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system. Acta Physica Sinica, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [11] Chen Tie-Ming, Jiang Rong-Rong. New hybrid stream cipher based on chaos and neural networks. Acta Physica Sinica, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [12] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [13] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [14] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [15] Niu Pei_Feng, Zhang Jun, Guan Xin_Ping. Research on a proportional-integral-derivative neural network decoupling control based on genetic algorithm optimization for unified chaotic system. Acta Physica Sinica, 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [16] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [17] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  2702
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  14 November 2023
  • Accepted Date:  18 January 2024
  • Available Online:  01 February 2024
  • Published Online:  20 March 2024

/

返回文章
返回