Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fast computation approach of electron-impact ionization and excitation cross-sections for atoms and ions with medium- and high-Z elements

Zhou Xu Wang Chuan Hu Rong-Hao Tao Zhi-Hao Deng Xiao-Liang Liang Yi-Han Li Xiao-Ya Lü Meng Zhu Wen-Jun

Citation:

Fast computation approach of electron-impact ionization and excitation cross-sections for atoms and ions with medium- and high-Z elements

Zhou Xu, Wang Chuan, Hu Rong-Hao, Tao Zhi-Hao, Deng Xiao-Liang, Liang Yi-Han, Li Xiao-Ya, Lü Meng, Zhu Wen-Jun
PDF
HTML
Get Citation
  • The atomic data of medium- and high-Z elements, such as electron-impact ionization and excitation cross-sections, possess extensive applications in fields such as fusion science and X-ray interactions with matter. There are atoms and ions in high energy density plasma, with different charge states and energy states ranging from ground states to highly excited states, and the cross-sections of each charge state and energy state need to be calculated. The bottlenecks limiting computational performance are the inevitable relativistic effects of medium- and high-Z elements and the extremely complex electronic configurations. Taking tantalum (Ta) for example, by using the relativistic Dirac-Fock theory and distorted wave model, we compute the electron-impact ionization and excitation cross-sections of Ta from the ground state atom up to Ta72+ with the incident electron energy range of 1–150 keV. The detailed configuration accounting (DCA) reaction channel cross-sections are derived by summing and weighting the original detailed level accounting (DLA) cross-sections. After examining the data, two regularities are found. In terms of DLA, the pre-averaging DCA cross-sections have varying initial DLA energy levels but are typically close to each other. There is not a straightforward function that can explain the discrepancies between them. In terms of DCA, inner subshells typically contribute very little to the total cross-section as their ionization and excitation cross-sections are orders of magnitude smaller than those of outer subshells. We provide two techniques to reduce the computational costs based on the regularities. To minimize the total number of DLA reaction channels used in the computation, the initial DLA energy levels can be randomly sampled. Through a Monte Carlo numerical experiment, we determine the appropriate number of sampling points that can reduce the total number of DLA channels by an order of magnitude while maintaining a 5% error margin. In terms of impact ionization, since small cross-section DCA channels are insignificant, only a tiny portion of the DCA channels are required to preserve a 95% accuracy of the entire cross-section. It is possible to use the analytical Binary Encounter Bethe (BEB) formula to determine which DCA channels should be neglected before the computation to reduce computational costs. In terms of electron-impact excitation, just the cross-sections of the same excited subshells as the preserved ionized subshells, which are determined in the previous electron-impact ionization (EII) calculations, are needed. Finally, we compare our EII results with theoretical and experimental results. In the low incident electron energy range of below 2 keV, our results accord with the theoretical result of the 6s EII cross-section of the Ta atom and the experimental result of the total EII cross-section of the Ta1+ ion. In the high energy range of below 150 keV, our results are also consistent with the theoretical result of the 1s EII cross-section of the Ta atom and the experimental result of the 1s EII cross-section of the Cu atom. Our results reasonably match the previous experimental and theoretical results in low-energy range and high-energy range, inner subshell and outer subshell, indicating the accuracy of our calculation. The proposed optimizing strategy can be applied to various medium- to high-Z elements and is compatible to most computation codes.
      Corresponding author: Hu Rong-Hao, ronghaohu@scu.edu.cn ; Liang Yi-Han, drollor@126.com ; Lü Meng, lvmengphys@scu.edu.cn
    [1]

    Ackermann W, Asova G, Ayvazyan V, et al. 2007 Nat. Photon. 1 336Google Scholar

    [2]

    Emma P, Akre R, Arthur J, et al. 2010 Nat. Photon. 4 641Google Scholar

    [3]

    Ishikawa T, Aoyagi H, Asaka T, et al. 2012 Nat. Photon. 6 540Google Scholar

    [4]

    贾豪彦, 黄森林, 焦毅等 2022 强激光与粒子束 34 05401

    Jia H Y, Huang S L, Jiao Y, et al. 2022 High Power Laser Part. Beam 34 05401

    [5]

    Zhao Z T, Wang D, Gu Q, et al. 2017 Synchrotron Radiat. News 30 6Google Scholar

    [6]

    杜靖元 2009 硕士学位论文 (武汉: 华中科技大学)

    Du J Y 2019 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [7]

    马小云, 董晨钟, 武中文, 蒋军, 颉录有 2012 物理学报 61 213401Google Scholar

    Ma X Y, Dong C Z, Wu Z W, Jiang J, Jie L Y 2012 Acta Phys. Sin. 61 213401Google Scholar

    [8]

    Jurek Z, Son S K, Ziaja B, Santra R 2016 J. Appl. Cryst. 49 1048Google Scholar

    [9]

    Son S K, Young L, Santra R 2011 Phys. Rev. A 83 033402Google Scholar

    [10]

    Medvedev N, Tkachenko V, Lipp V, Li Z, Ziaja B 2018 4open 1 3Google Scholar

    [11]

    Renner O, Rosmej F B 2019 Matter Radiat. Extremes 4 024201Google Scholar

    [12]

    Barber J L, Barnes C W, Sandberg R L, Sheffield R L 2014 Phys. Rev. B 89 184105Google Scholar

    [13]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249Google Scholar

    [14]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597Google Scholar

    [15]

    Gu M F 2008 Can. J. Phys. 86 675Google Scholar

    [16]

    Chen Z B, Tian Y S, Sang C C, Wan X L, Wang K, Guo X L 2019 Atomic Data Nucl. Data Tables 129-130 101278Google Scholar

    [17]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525Google Scholar

    [18]

    焦飞, 蒋军, 颉录有, 张登红, 董晨钟, 陈展斌 2015 物理学报 64 233401Google Scholar

    Jiao F, Jiang J, Jie L Y, Zhang D H, Dong C Z, Chen Z B 2015 Acta Phys. Sin. 64 233401Google Scholar

    [19]

    Althiyabi A, El-Sayed F 2022 Atomic Data Nucl. Data Tables 147 101528Google Scholar

    [20]

    Zhong J Y, Zhang J, Zeng J L, Zhao G, Gu M F 2005 Atomic Data Nucl. Data Tables 89 101Google Scholar

    [21]

    Motoumba E B, Yoca S E, Quinet P, Palmeri P 2020 Atomic Data Nucl. Data Tables 133-134 101340Google Scholar

    [22]

    Aggarwal K M 2019 Atomic Data Nucl. Data Tables 125 261Google Scholar

    [23]

    Jönsson P, Alkauskas A, Gaigalas G 2013 Atomic Data Nucl. Data Tables 99 431Google Scholar

    [24]

    Wang C, Liang Y H, Hu R H, He K, Gao G L, Yan X, Yao D, Wang T, Li X Y, Tian J S, Zhu W J, Lü M 2023 arXiv: 2306.08948v1 [physics. optics]

    [25]

    Henderson J R, Beiersdorfer P, Bennett C L 1990 Phys. Rev. Lett. 65 705Google Scholar

    [26]

    Knapp D A, Marrs R E, Elliott S R, Magee E W, Zasadzinski R 1993 Nucl. Instr. Meth. Phys. Res. A 334 305Google Scholar

    [27]

    Clementson J, Beiersdorfer P, Gu M F 2010 Phys. Rev. A 81 012505Google Scholar

    [28]

    Ralchenko Y, Draganic I N, Tan J N, Gillaspy J D, Pomeroy J M, Reader J, Feldman U, Holland G E 2008 J. Phys. B: At. Mol. Opt. Phys. 41 021003Google Scholar

    [29]

    Middleman I M, Ford H I, Hofstadter R 1970 Phys. Rev. A 2 1429Google Scholar

    [30]

    Müller A, Schippers S, Hellhund J, Holste K, Kilcoyne A L D, Phaneuf R A, Ballance C P, McLaughlin B M 2015 J. Phys. B: At. Mol. Opt. Phys. 48 235203Google Scholar

    [31]

    Santoni A, Derossi A, Finetti P, Agostino R G, Luo B 1992 Phys. Rev. B 46 15660Google Scholar

    [32]

    Singh N, Mittal R, Singh B, Allawadhi K L, Sood B S 1986 Phys. Rev. A 34 3459Google Scholar

    [33]

    Kim Y K, Rudd M E 1994 Phys. Rev. A 50 3954Google Scholar

    [34]

    Hübner H, Ilgen K, Hoffmann K W 1972 Z Physik. 255 269Google Scholar

    [35]

    Shima K 1980 Phys. Lett. A 77 237Google Scholar

    [36]

    Shima K, Nakagawa T, Umetani K, Mikumo T 1980 Phys. Rev. A 24 72Google Scholar

    [37]

    Patory M A R, Uddin M A, Haque A K F, Shahjahan M, Basak A K, Talukder M R, Saha B C 2009 Int. J. Quantum Chem. 109 897Google Scholar

    [38]

    Pindzola M S, Loch S D, Colgan J P 2022 J. Phys. B: At. Mol. Opt. Phys. 55 235203Google Scholar

    [39]

    Man K F, Smith A C H, Harrison M F A 1987 J. Phys. B: At. Mol. Phys 20 4895Google Scholar

    [40]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102Google Scholar

  • 图 1  中间总截面相对于其均值的偏差 (a) Ta4+[Xe]6s04f55d10碰撞电离截面; (b) Ta9+[Kr]5s24d105p46s04f12碰撞电离截面; (c) Ta16+[Kr]5s14d105p06s04f10碰撞电离截面; (d) Ta4+[Xe]6s04f55d10碰撞激发截面, 激发到6p亚层

    Figure 1.  Deviation between pre-averaging total cross-section and averaged total cross-section: (a) Electron-impact ionization (EII) cross-section of Ta4+[Xe]6s04f55d10; (b) EII cross-section of Ta9+[Kr]5s24d105p46s04f12; (c) EII cross-section of Ta16+[Kr]5s14d105p06s04f10; (d) EIE cross-section of Ta4+[Xe]6s04f55d10, excited to 6p subshell.

    图 2  通过蒙特卡罗实验评估采样点个数的最佳选择(碰撞电离) (a) Ta10+[Kr]5s24d105p36s04f12, 5p亚层; (b) Ta12+[Xe]6s04f7, 4f亚层; (c) Ta15+[Kr]5s04d105p66s04f6, 4f亚层; (d) Ta20+[Kr]5s04d105p06s04f7, 4f亚层

    Figure 2.  Evaluation of optimal number of sample points via Monte-Carlo experiment (EII): (a) Ta10+[Kr]5s24d105p36s04f12, on 5p; (b) Ta12+[Xe]6s04f7, on 4f; (c) Ta15+[Kr]5s04d105p66s04f6, on 4f; (d) Ta20+[Kr]5s04d105p06s04f7, on 4f.

    图 3  Ta原子的碰撞电离截面 (a)本文的计算结果; (b) BEB模型的估算结果

    Figure 3.  Collisional ionization cross-section of Ta atom: (a) Our calculation; (b) BEB model estimation.

    图 4  Ta原子碰撞电离截面的累积占比 (a)本文的计算结果; (b) BEB模型的估计结果

    Figure 4.  Accumulated ratio of EII cross-section of Ta atom: (a) Our calculation; (b) BEB model estimation.

    图 5  Ta原子碰撞激发截面与DCA反应道能级差的关系

    Figure 5.  EIE cross-section of Ta atom vs. DCA reaction channel threshold energy.

    图 6  基于DW方法计算的碰撞电离截面与实验和理论结果比较 (a) Ta原子的1s亚层碰撞电离截面; (b) Cu原子的1s亚层碰撞电离截面; (c) Ta原子的6s亚层碰撞电离截面; (d) Ta1+离子的总碰撞电离截面及贡献最大的几个电子亚层的碰撞电离截面(5d, 4f, 6s, 5p)

    Figure 6.  EII cross-sections based on DW method compared to experimental and theoretical results: (a) EII cross-section of 1s shell of Ta atom; (b) EII cross-section of 1s shell of Cu atom; (c) EII cross-section of 6s shell of Ta atom; (d) total EII cross-section of Ta1+ ion, alongside with EII cross-section of the most-contributing subshells (5d, 4f, 6s, 5p).

  • [1]

    Ackermann W, Asova G, Ayvazyan V, et al. 2007 Nat. Photon. 1 336Google Scholar

    [2]

    Emma P, Akre R, Arthur J, et al. 2010 Nat. Photon. 4 641Google Scholar

    [3]

    Ishikawa T, Aoyagi H, Asaka T, et al. 2012 Nat. Photon. 6 540Google Scholar

    [4]

    贾豪彦, 黄森林, 焦毅等 2022 强激光与粒子束 34 05401

    Jia H Y, Huang S L, Jiao Y, et al. 2022 High Power Laser Part. Beam 34 05401

    [5]

    Zhao Z T, Wang D, Gu Q, et al. 2017 Synchrotron Radiat. News 30 6Google Scholar

    [6]

    杜靖元 2009 硕士学位论文 (武汉: 华中科技大学)

    Du J Y 2019 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [7]

    马小云, 董晨钟, 武中文, 蒋军, 颉录有 2012 物理学报 61 213401Google Scholar

    Ma X Y, Dong C Z, Wu Z W, Jiang J, Jie L Y 2012 Acta Phys. Sin. 61 213401Google Scholar

    [8]

    Jurek Z, Son S K, Ziaja B, Santra R 2016 J. Appl. Cryst. 49 1048Google Scholar

    [9]

    Son S K, Young L, Santra R 2011 Phys. Rev. A 83 033402Google Scholar

    [10]

    Medvedev N, Tkachenko V, Lipp V, Li Z, Ziaja B 2018 4open 1 3Google Scholar

    [11]

    Renner O, Rosmej F B 2019 Matter Radiat. Extremes 4 024201Google Scholar

    [12]

    Barber J L, Barnes C W, Sandberg R L, Sheffield R L 2014 Phys. Rev. B 89 184105Google Scholar

    [13]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249Google Scholar

    [14]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597Google Scholar

    [15]

    Gu M F 2008 Can. J. Phys. 86 675Google Scholar

    [16]

    Chen Z B, Tian Y S, Sang C C, Wan X L, Wang K, Guo X L 2019 Atomic Data Nucl. Data Tables 129-130 101278Google Scholar

    [17]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525Google Scholar

    [18]

    焦飞, 蒋军, 颉录有, 张登红, 董晨钟, 陈展斌 2015 物理学报 64 233401Google Scholar

    Jiao F, Jiang J, Jie L Y, Zhang D H, Dong C Z, Chen Z B 2015 Acta Phys. Sin. 64 233401Google Scholar

    [19]

    Althiyabi A, El-Sayed F 2022 Atomic Data Nucl. Data Tables 147 101528Google Scholar

    [20]

    Zhong J Y, Zhang J, Zeng J L, Zhao G, Gu M F 2005 Atomic Data Nucl. Data Tables 89 101Google Scholar

    [21]

    Motoumba E B, Yoca S E, Quinet P, Palmeri P 2020 Atomic Data Nucl. Data Tables 133-134 101340Google Scholar

    [22]

    Aggarwal K M 2019 Atomic Data Nucl. Data Tables 125 261Google Scholar

    [23]

    Jönsson P, Alkauskas A, Gaigalas G 2013 Atomic Data Nucl. Data Tables 99 431Google Scholar

    [24]

    Wang C, Liang Y H, Hu R H, He K, Gao G L, Yan X, Yao D, Wang T, Li X Y, Tian J S, Zhu W J, Lü M 2023 arXiv: 2306.08948v1 [physics. optics]

    [25]

    Henderson J R, Beiersdorfer P, Bennett C L 1990 Phys. Rev. Lett. 65 705Google Scholar

    [26]

    Knapp D A, Marrs R E, Elliott S R, Magee E W, Zasadzinski R 1993 Nucl. Instr. Meth. Phys. Res. A 334 305Google Scholar

    [27]

    Clementson J, Beiersdorfer P, Gu M F 2010 Phys. Rev. A 81 012505Google Scholar

    [28]

    Ralchenko Y, Draganic I N, Tan J N, Gillaspy J D, Pomeroy J M, Reader J, Feldman U, Holland G E 2008 J. Phys. B: At. Mol. Opt. Phys. 41 021003Google Scholar

    [29]

    Middleman I M, Ford H I, Hofstadter R 1970 Phys. Rev. A 2 1429Google Scholar

    [30]

    Müller A, Schippers S, Hellhund J, Holste K, Kilcoyne A L D, Phaneuf R A, Ballance C P, McLaughlin B M 2015 J. Phys. B: At. Mol. Opt. Phys. 48 235203Google Scholar

    [31]

    Santoni A, Derossi A, Finetti P, Agostino R G, Luo B 1992 Phys. Rev. B 46 15660Google Scholar

    [32]

    Singh N, Mittal R, Singh B, Allawadhi K L, Sood B S 1986 Phys. Rev. A 34 3459Google Scholar

    [33]

    Kim Y K, Rudd M E 1994 Phys. Rev. A 50 3954Google Scholar

    [34]

    Hübner H, Ilgen K, Hoffmann K W 1972 Z Physik. 255 269Google Scholar

    [35]

    Shima K 1980 Phys. Lett. A 77 237Google Scholar

    [36]

    Shima K, Nakagawa T, Umetani K, Mikumo T 1980 Phys. Rev. A 24 72Google Scholar

    [37]

    Patory M A R, Uddin M A, Haque A K F, Shahjahan M, Basak A K, Talukder M R, Saha B C 2009 Int. J. Quantum Chem. 109 897Google Scholar

    [38]

    Pindzola M S, Loch S D, Colgan J P 2022 J. Phys. B: At. Mol. Opt. Phys. 55 235203Google Scholar

    [39]

    Man K F, Smith A C H, Harrison M F A 1987 J. Phys. B: At. Mol. Phys 20 4895Google Scholar

    [40]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102Google Scholar

  • [1] Chen Zhan-Bin, Ma Kun. Influence of eikonal-initial-state on ionization of atom by proton. Acta Physica Sinica, 2018, 67(11): 113401. doi: 10.7498/aps.67.20172465
    [2] Zhang Li-Min, Jia Chang-Chun, Wang Qi, Chen Zhang-Jin. First-order distorted wave Born approximation for single ionization of Ar by electron impact in a coplanar doubly symmetric geometry. Acta Physica Sinica, 2014, 63(15): 153401. doi: 10.7498/aps.63.153401
    [3] Zhao Wu-Duo, Wang Wei-Guo, Li Hai-Yang. Numerical simulation and experimental investigation of the production of multiply charged ions by the ionization of benzene cluster with a moderate intensity laser. Acta Physica Sinica, 2014, 63(10): 103602. doi: 10.7498/aps.63.103602
    [4] Liu Meng, Su Lu-Ning, Zheng Yi, Li Yu-Tong, Wang Wei-Min, Sheng Zheng-Ming, Chen Li-Ming, Ma Jing-Long, Lu Xin, Wang Zhao-Hua, Wei Zhi-Yi, Hu Bi-Tao, Zhang Jie. Origin of energetic carbon ions with different charge states in ultrashort laser-thin foil interactions. Acta Physica Sinica, 2013, 62(16): 165201. doi: 10.7498/aps.62.165201
    [5] Zhuo Qing-Qing, Liu Hong-Xia, Peng Li, Yang Zhao-Nian, Cai Hui-Min. Mechanism of three kink effects in irradiated partially-depleted SOINMOSFET's. Acta Physica Sinica, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [6] Ding Ding, He Bin, Shi Xian, Jian Guo. The differential cross sections and mechanisms of ionization and in the collisions of He2++H(1s) with strong magnetic fields. Acta Physica Sinica, 2013, 62(3): 033401. doi: 10.7498/aps.62.033401
    [7] Hu Ya-Hua, Ye Dan-Dan, Qi Yue-Ying, Liu Xiao-Ju, Liu Ling. Research on collision ionization process of Be atom by proton. Acta Physica Sinica, 2012, 61(24): 243401. doi: 10.7498/aps.61.243401
    [8] Zhuo Qing-Qing, Liu Hong-Xia, Yang Zhao-Nian, Cai Hui-Min, Hao Yue. The total dose irradiation effects of SOI NMOS devices under different bias conditions. Acta Physica Sinica, 2012, 61(22): 220702. doi: 10.7498/aps.61.220702
    [9] Zhang Dong-Ling, Tang Qing-Bin, Yu Ben-Hai, Chen Dong. Nonsequential double ionization of argon atom below the recollision threshold. Acta Physica Sinica, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [10] Guo Bao-Zeng, Zhang Suo-Liang, Liu Xin. Electron transport property in wurtzite GaN at high electric field with Monte Carlo simulation. Acta Physica Sinica, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [11] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. First-principles investigation of carrier Auger lifetime and impact ionization rate in narrow-gap superlattices. Acta Physica Sinica, 2010, 59(8): 5661-5666. doi: 10.7498/aps.59.5661
    [12] Tian Ming-Feng, Meng Xu-Jun, Zhu Xi-Rui, Jiang Min-Hao, Wang Zhi-Gang. Theoretical study of cross sections of excitation and ionization for electron-ion impact in average-atomic model. Acta Physica Sinica, 2005, 54(10): 4673-4679. doi: 10.7498/aps.54.4673
    [13] Wang Xiao-Feng, Jia Tian-Qing, Xu Zhi-Zhan. Photon absorption of conduction band electronsand impact ionization under irradiation of few-cycle ultrashort laser pulses. Acta Physica Sinica, 2005, 54(7): 3451-3456. doi: 10.7498/aps.54.3451
    [14] LIU XIAO-YA, LI QUAN, JIANG GANG, ZHU ZHENG-HECHEN, HAN-DE, JIN XING-XING, TANG YONG-JIAN. THE MECHANISM OF MICROWAVE EXCITATION IN ArS2 SYSTEM. Acta Physica Sinica, 2000, 49(12): 2340-2346. doi: 10.7498/aps.49.2340
    [15] WANG JIN, HU ZHENG-FA, ZHANG DENG-YU, ZHAN MING-SHENG. EXCITATION ENERGY TRANSFER BY COLLISIONS BETWEEN EXCITED RUBIDIUM ATOMS. Acta Physica Sinica, 1998, 47(8): 1265-1271. doi: 10.7498/aps.47.1265
    [16] YAN SHI-XIANG, CHEN CHONG-YANG, TENG ZHOU-XUAN, WANG YAN-SEN, SUN YONG-SHENG. DISTORTED-WAVE CALCULATIONS OF THE ELECTRON-IMPACT IONIZATION FOR LOWLY AND MEDIUMLY IONIZED IONS. Acta Physica Sinica, 1998, 47(4): 583-590. doi: 10.7498/aps.47.583
    [17] SHEN YI-FAN, LI WAN-XING. COLLISIONAL ENERGY POOLING BETWEEN EXCITED SODIUM ATOMS. Acta Physica Sinica, 1996, 45(1): 29-36. doi: 10.7498/aps.45.29
    [18] Fang Quan-Yu, Cai Wei, Shen Zhi-Jun, Li Peng, Zhou Yu, Xu Yuan-Guang, Chen Guo-Xin. . Acta Physica Sinica, 1995, 44(3): 383-395. doi: 10.7498/aps.44.383
    [19] SHEN YI-FAN, LI WAN-XING. ENERGY TRANSFER IN COLLISIONS BETWEEN TWO EXCITED CESIUM ATOMS. Acta Physica Sinica, 1993, 42(11): 1766-1773. doi: 10.7498/aps.42.1766
    [20] SHEN YI-FAN, LI WAN-XIN. ASSOCIATIVE IONIZATION OCCURRING IN COLLISIONS BETWEEN TWO Na(3P) ATOMS. Acta Physica Sinica, 1993, 42(1): 32-39. doi: 10.7498/aps.42.32
  • supplement 10-20240213Suppl.pdf supplement
Metrics
  • Abstract views:  1120
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  31 January 2024
  • Accepted Date:  13 March 2024
  • Available Online:  20 March 2024
  • Published Online:  20 May 2024

/

返回文章
返回