Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Facile synthesis of phase-adjustable CsPbBr3-Cs4PbBr6 composite nanocrystals and in-situ study of phase transformation process

Chen Xue-Lian Shen Yan-Bing Yuan Zhi-Cong Li Kai-Rui Pan Xi-Qiang

Citation:

Facile synthesis of phase-adjustable CsPbBr3-Cs4PbBr6 composite nanocrystals and in-situ study of phase transformation process

Chen Xue-Lian, Shen Yan-Bing, Yuan Zhi-Cong, Li Kai-Rui, Pan Xi-Qiang
PDF
HTML
Get Citation
  • All-inorganic cesium lead halide perovskites have shown great potential applications in optoelectronic field due to their fascinating optical properties. Although perovskite materials have achieved great success in various fields, their inherent ionic properties and high dynamic surface properties have led to their poor stability, hindering their applications. The preparation of CsPbBr3-Cs4PbBr6 nanocrystals has proven to be an effective strategy to enhance their photoluminescence properties and stability. Herein, we report an easy synthesis of CsPbBr3-Cs4PbBr6 nanocrystals with a diphase structure at room temperature by using Cs-OA, Pb-OA and TOABr as precursors in toluene. It is found that the phase transformation and the relative composition between CsPbBr3 and Cs4PbBr6 are dependent on the concentration of TOABr and the ratio of Cs/Pb. The in-situ PL experiments reveal that the formation of ~12 nm CsPbBr3 nanocubes experiences the fast nucleation, the focusing growth of size-distribution in early growth stage and Ostwald ripening growth in the later stage at a TOABr concentration of 0.16 mmol. With the increase of concentration of TOABr or molar ratio of Cs/Pb > 1 (Cs/Pb < 1), [PbBr4]2– complex and [PbBr3] complex can coexist and compete with each other in toluene, and the CsPbBr3 nucleations dominate in the early stage, then CsPbBr3-Cs4PbBr6 nanocomposites are gradually formed on CsPbBr3 nucleations as photoluminescence centers due to the continuous generation of [PbBr4]2– complex between TOABr and Pb2+. The relative composition of Cs4PbBr6 in CsPbBr3-Cs4PbBr6 nanocomposites can be improved from 4% to 85% with the concentration of TOABr increasing or Cs/Pb < 1. The optimized CsPbBr3-Cs4PbBr6 composite nanocrystals possess high PLQY and stability. Our work provides an understanding of the mechanism of phase transformation in cesium lead halide perovskite materials.
      Corresponding author: Chen Xue-Lian, chenxl@xsyu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104191) and the Postgraduate Innovation and Practical Ability Training Program of Xi’an Shiyou University, China (Grant No. YCS23113077).
    [1]

    Peng C, Zhang R, Chen H, Liu Y, Zhang S L, Fang T, Guo R, Zhang J, Shan Q, Jin Y, Wang L, Hou L, Zeng H B 2023 Adv. Mater. 35 2206969Google Scholar

    [2]

    Kim Y H, Kim S, Kakekhani A, et al. 2021 Nat. Photonics 15 148Google Scholar

    [3]

    Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H, Gao F 2021 Nat. Mater. 20 10Google Scholar

    [4]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [5]

    Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [6]

    Ng C K, Wang C, Jasieniak J J 2019 Langmuir 35 11609Google Scholar

    [7]

    Ng C K, Yin W, Li H, Jasieniak J J 2020 Nanoscale 12 4859Google Scholar

    [8]

    Chen M, Zou Y T, Wu L Z, Pan Q, Yang D, Hu H C, Tan Y S, Zhong Q X, Xu Y, Liu H Y, Sun B Q, Zhang Q 2017 Adv. Funct. Mater. 27 1701121Google Scholar

    [9]

    Long Z, Ren H, Sun J H, Ouyang J, Na N 2017 Chem. Commun. 53 9914Google Scholar

    [10]

    Liu W, Zheng J, Cao S, Wang L, Gao F, Chou K C, Hou X, Yang W 2018 Inorg. Chem. 57 1598Google Scholar

    [11]

    Tong Y, Bladt E, Aygüler M F, Manzi A, Milowska K Z, Hintermayr V A, Docampo P, Bals S, Urban A S, Polavarapu L, Feldmann J 2016 Angew. Chem. Int. Ed. 55 13887Google Scholar

    [12]

    Tong Y, Yao E P, Manzi A, Bladt E, Wang K, Döblinger M, Bals S, Müller-Buschbaum P, Urban A S, Polavarapu L, Feldmann J 2018 Adv. Mater. 30 1801117Google Scholar

    [13]

    De Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [14]

    Wang Y, Yuan J Y, Zhang X L, Ling X F, Larson B W, Zhao Q, Yang Y G, Shi Y, Luther J M, Ma W L 2020 Adv. Mater. 32 2000449Google Scholar

    [15]

    Shankar H, Ghosh S, Kar P 2022 J. Mater. Chem. C 10 11532Google Scholar

    [16]

    陈雪莲, 焦琥珀, 申岩冰, 潘喜强 2023 物理学报 72 097801Google Scholar

    Chen X L, Jiao H P, Shen Y B, Pan X Q 2023 Acta Phys. Sin. 72 097801Google Scholar

    [17]

    Scharf E, Krieg F, Elimelech O, Oded M, Levi A, Dirin D N, Kovalenko M V, Banin U 2022 Nano Lett. 22 4340Google Scholar

    [18]

    Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar

    [19]

    Grisorio R, Fasulo F, Muñoz-García A B, Pavone M, Conelli D, Fanizza E, Striccoli M, Allegretta I, Terzano R, Margiotta N, Vivo P, Suranna G P 2022 Nano Lett. 22 4437Google Scholar

    [20]

    Song S, Lv Y C, Cao B Q, Wang W Z 2023 Adv. Funct. Mater. 33 2300493Google Scholar

    [21]

    陈雪莲, 焦琥珀, 申岩冰, 潘喜强 2022 物理学报 71 096802Google Scholar

    Chen X L, Jiao H P, Shen Y B, Pan X Q 2022 Acta Phys. Sin. 71 096802Google Scholar

    [22]

    Su Y C, Jing Q, Xu Y, Xing X, Lu Z D 2019 ACS Omega 4 22209Google Scholar

    [23]

    Li X W, Cai W S, Guan H L, Zhao S Y, Cao S L, Chen C, Liu M, Zang Z G 2021 Chem. Eng. J. 419 129551Google Scholar

    [24]

    Zhang J B, Jiang P F, Wang Y, Liu X F, Ma J M, Tu G L 2020 ACS Appl. Mater. Interfaces 12 3080Google Scholar

    [25]

    Cho H B, Min J W, Kim H J, Viswanath N S M, Samanta T, Han J H, Park Y M, Jang S W, Im W B 2023 ACS Appl. Electron. Mater. 5 66Google Scholar

    [26]

    Kim H, Park J H, Kim K, Lee D, Song M H, Park J 2022 Adv. Sci. 9 2104660Google Scholar

    [27]

    Bao Z, Chiu H D, Wang W G, Su Q, Yamada T, Chang Y C, Chen S M, Kanemitsu Y, Chung R J, Liu R S 2020 J. Phys. Chem. Lett. 11 10196Google Scholar

    [28]

    Xu L M, Li J H, Fang T, Zhao Y L, Yuan S C, Dong Y H, Song J Z 2019 Nanoscale Adv. 1 980Google Scholar

    [29]

    Zhao X, Shen S L, Gan L, Zhang J L, Zhou W L, Yu L P, Lian S X 2023 J. Lumin. 261 119909Google Scholar

    [30]

    Wang C F, Zhang C Y, Wang F C, Chen J, Ren E L, Kong J F, Li L, Xu J Y, Zhang Y 2022 Opt. Mater. 128 112444Google Scholar

    [31]

    Wang X J, Liu Y Q, Liu N Q, Sun R J, Zheng W, Liu H, Zhang Y H 2021 J. Mater. Chem. A 9 4658Google Scholar

    [32]

    Balakrishnan S K, Kamat P V 2018 Chem. Mater. 30 74Google Scholar

    [33]

    Qiao Z, Wang X, Zhai Y F, Yu R Z, Fang Z, Chen G 2023 Nano Lett. 23 10788Google Scholar

    [34]

    Yoon S J, Stamplecoskie K G, Kamat P V 2016 J. Phys. Chem. C 7 1368Google Scholar

    [35]

    Hui J, Jiang Y N, Gökçinar Ö Ö, Tang J B, Yu Q Y, Zhang M, Yu K 2020 Chem. Mater. 32 4574Google Scholar

    [36]

    Montanarella F, Akkerman Q A, Bonatz D, van der Sluijs M M, van der Bok J C, Prins P T, Aebli M, Mews A, Vanmaekelbergh D, Kovalenko M V 2023 Nano Lett. 23 667Google Scholar

    [37]

    Xu Z S, Yang Y J, Wang P, Liu X F, Qiu J R 2024 Ceram. Int. 50 8952Google Scholar

    [38]

    Kovalenko M V, Protesescu L, Bodnarchuk M I 2017 Science 358 745Google Scholar

  • 图 1  不同TOABr用量下所得铯铅溴纳米晶溶液的PL光谱(a)和UV-vis吸收光谱(b)

    Figure 1.  (a) PL spectra (a) and UV-vis absorption spectra (b) of cesium lead bromide nanocrystal suspension at different dosages of TOABr.

    图 2  (a)—(d)不同TOABr用量下所得铯铅溴纳米晶的TEM表征和晶粒尺寸统计结果, 其中(a) Br 0.16 mmol; (b) Br 0.24 mmol; (c) Br 0.32 mmol; (d) Br 0.4 mmol; (e)为图(c)中选择的任意样品区域的HRTEM图(黄色线圈为出现小黑点区域), (f)为小黑点晶粒的尺寸分布图

    Figure 2.  TEM images and the corresponding histograms of cesium lead bromide nanocrystals synthesized at different dosages of TOABr: (a) Br 0.16 mmol, (b) Br 0.24 mmol, (c) Br 0.32 mmol, and (d) Br 0.4 mmol. (e) HRTEM image of sample in panel (c) (the yellow circles represent the small black dots); (f) size distribution of the small black dots from panel (e).

    图 3  不同TOABr用量下所得铯铅溴钙钛矿纳米晶的XRD图谱

    Figure 3.  X-ray diffraction patterns of cesium lead bromide nanocrystals synthesized at different dosages of TOABr.

    图 4  不同浓度的TOABr前驱体与Pb-OA前驱体混合所得溶液的UV-vis图

    Figure 4.  UV-vis absorption spectra of the solution obtained by mixing Pb-OA precursor and different concentration of TOABr precursor.

    图 5  不同Cs/Pb摩尔比下所得铯铅溴纳米晶溶液的(a) PL光谱和(b) UV-vis吸收光谱

    Figure 5.  (a) PL spectra and (b) UV-vis absorption spectra of cesium lead bromide nanocrystal suspension at different molar ratio of Cs/Pb.

    图 6  不同Cs/Pb摩尔比下所得铯铅溴纳米晶的XRD图

    Figure 6.  X-ray diffraction patterns of cesium lead bromide nanocrystals synthesized at different molar ratio of Cs/Pb.

    图 7  不同Cs/Pb摩尔比下所得铯铅溴纳米晶的TEM表征结果和尺寸分布图 (a) 2∶1; (b) 2∶2; (c) 2∶3

    Figure 7.  TEM images and the corresponding histograms of cesium lead bromide nanocrystals synthesized at different molar ratio of Cs/Pb: (a) 2∶1; (b) 2∶2; (c) 2∶3.

    图 8  不同溴用量下所得铯铅溴纳米晶在80 s内的原位PL光谱图, 插图为纳米晶在80 s后的离线PL光谱图

    Figure 8.  In-situ PL spectra of cesium lead bromide nanocrystals synthesized at different dosages of bromide ions within 80 s. The inset shows the ex-situ PL spectra of nanocrystals at reaction time after 80 s.

    图 9  不同溴用量下所得铯铅溴纳米晶的PL峰峰位(a)、半峰宽(b)及峰强(c)随反应时间的变化规律图

    Figure 9.  Changes in PL peak position (a), FWHM (b), peak intensity (c) of cesium lead bromide nanocrystals synthesized at different dosages of Br as a function of reaction time.

    图 10  不同Cs/Pb摩尔比下所得铯铅溴纳米晶的PL峰峰位(a)、半峰宽(b)及峰强(c)随反应时间的变化规律图

    Figure 10.  Changes in PL peak position (a), FWHM (b), peak intensity (c) of cesium lead bromide nanocrystals synthesized at different molar ratio of Cs/Pb as a function of reaction time.

    图 11  CsPbBr3纳米晶和CsPbBr3-Cs4PbBr6复合纳米晶的生长机理图

    Figure 11.  Schematic presentation of growth mechanisms of CsPbBr3 NCs and CsPbBr3-Cs4PbBr6 composite NCs.

    表 1  不同TOABr用量下所得纳米晶中单斜相CsPbBr3和六方相Cs4PbBr6的相占比

    Table 1.  Proportion of CsPbBr3 and Cs4PbBr6 in nanocrystals synthesized at different dosages of TOABr.

    溴用量/mmol
    0.160.240.320.4
    CsPbBr3相占比/%96895817
    Cs4PbBr6相占比/%4114283
    DownLoad: CSV

    表 2  不同Cs/Pb摩尔比下所得纳米晶中CsPbBr3相和Cs4PbBr6相的占比情况

    Table 2.  Proportion of CsPbBr3 and Cs4PbBr6 in nanocrystals synthesized at different molar ratio of Cs/Pb.

    Cs/Pb摩尔比
    2∶12∶22∶3
    CsPbBr3相占比/%155828
    Cs4PbBr6相占比/%854272
    DownLoad: CSV
  • [1]

    Peng C, Zhang R, Chen H, Liu Y, Zhang S L, Fang T, Guo R, Zhang J, Shan Q, Jin Y, Wang L, Hou L, Zeng H B 2023 Adv. Mater. 35 2206969Google Scholar

    [2]

    Kim Y H, Kim S, Kakekhani A, et al. 2021 Nat. Photonics 15 148Google Scholar

    [3]

    Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H, Gao F 2021 Nat. Mater. 20 10Google Scholar

    [4]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [5]

    Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [6]

    Ng C K, Wang C, Jasieniak J J 2019 Langmuir 35 11609Google Scholar

    [7]

    Ng C K, Yin W, Li H, Jasieniak J J 2020 Nanoscale 12 4859Google Scholar

    [8]

    Chen M, Zou Y T, Wu L Z, Pan Q, Yang D, Hu H C, Tan Y S, Zhong Q X, Xu Y, Liu H Y, Sun B Q, Zhang Q 2017 Adv. Funct. Mater. 27 1701121Google Scholar

    [9]

    Long Z, Ren H, Sun J H, Ouyang J, Na N 2017 Chem. Commun. 53 9914Google Scholar

    [10]

    Liu W, Zheng J, Cao S, Wang L, Gao F, Chou K C, Hou X, Yang W 2018 Inorg. Chem. 57 1598Google Scholar

    [11]

    Tong Y, Bladt E, Aygüler M F, Manzi A, Milowska K Z, Hintermayr V A, Docampo P, Bals S, Urban A S, Polavarapu L, Feldmann J 2016 Angew. Chem. Int. Ed. 55 13887Google Scholar

    [12]

    Tong Y, Yao E P, Manzi A, Bladt E, Wang K, Döblinger M, Bals S, Müller-Buschbaum P, Urban A S, Polavarapu L, Feldmann J 2018 Adv. Mater. 30 1801117Google Scholar

    [13]

    De Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [14]

    Wang Y, Yuan J Y, Zhang X L, Ling X F, Larson B W, Zhao Q, Yang Y G, Shi Y, Luther J M, Ma W L 2020 Adv. Mater. 32 2000449Google Scholar

    [15]

    Shankar H, Ghosh S, Kar P 2022 J. Mater. Chem. C 10 11532Google Scholar

    [16]

    陈雪莲, 焦琥珀, 申岩冰, 潘喜强 2023 物理学报 72 097801Google Scholar

    Chen X L, Jiao H P, Shen Y B, Pan X Q 2023 Acta Phys. Sin. 72 097801Google Scholar

    [17]

    Scharf E, Krieg F, Elimelech O, Oded M, Levi A, Dirin D N, Kovalenko M V, Banin U 2022 Nano Lett. 22 4340Google Scholar

    [18]

    Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar

    [19]

    Grisorio R, Fasulo F, Muñoz-García A B, Pavone M, Conelli D, Fanizza E, Striccoli M, Allegretta I, Terzano R, Margiotta N, Vivo P, Suranna G P 2022 Nano Lett. 22 4437Google Scholar

    [20]

    Song S, Lv Y C, Cao B Q, Wang W Z 2023 Adv. Funct. Mater. 33 2300493Google Scholar

    [21]

    陈雪莲, 焦琥珀, 申岩冰, 潘喜强 2022 物理学报 71 096802Google Scholar

    Chen X L, Jiao H P, Shen Y B, Pan X Q 2022 Acta Phys. Sin. 71 096802Google Scholar

    [22]

    Su Y C, Jing Q, Xu Y, Xing X, Lu Z D 2019 ACS Omega 4 22209Google Scholar

    [23]

    Li X W, Cai W S, Guan H L, Zhao S Y, Cao S L, Chen C, Liu M, Zang Z G 2021 Chem. Eng. J. 419 129551Google Scholar

    [24]

    Zhang J B, Jiang P F, Wang Y, Liu X F, Ma J M, Tu G L 2020 ACS Appl. Mater. Interfaces 12 3080Google Scholar

    [25]

    Cho H B, Min J W, Kim H J, Viswanath N S M, Samanta T, Han J H, Park Y M, Jang S W, Im W B 2023 ACS Appl. Electron. Mater. 5 66Google Scholar

    [26]

    Kim H, Park J H, Kim K, Lee D, Song M H, Park J 2022 Adv. Sci. 9 2104660Google Scholar

    [27]

    Bao Z, Chiu H D, Wang W G, Su Q, Yamada T, Chang Y C, Chen S M, Kanemitsu Y, Chung R J, Liu R S 2020 J. Phys. Chem. Lett. 11 10196Google Scholar

    [28]

    Xu L M, Li J H, Fang T, Zhao Y L, Yuan S C, Dong Y H, Song J Z 2019 Nanoscale Adv. 1 980Google Scholar

    [29]

    Zhao X, Shen S L, Gan L, Zhang J L, Zhou W L, Yu L P, Lian S X 2023 J. Lumin. 261 119909Google Scholar

    [30]

    Wang C F, Zhang C Y, Wang F C, Chen J, Ren E L, Kong J F, Li L, Xu J Y, Zhang Y 2022 Opt. Mater. 128 112444Google Scholar

    [31]

    Wang X J, Liu Y Q, Liu N Q, Sun R J, Zheng W, Liu H, Zhang Y H 2021 J. Mater. Chem. A 9 4658Google Scholar

    [32]

    Balakrishnan S K, Kamat P V 2018 Chem. Mater. 30 74Google Scholar

    [33]

    Qiao Z, Wang X, Zhai Y F, Yu R Z, Fang Z, Chen G 2023 Nano Lett. 23 10788Google Scholar

    [34]

    Yoon S J, Stamplecoskie K G, Kamat P V 2016 J. Phys. Chem. C 7 1368Google Scholar

    [35]

    Hui J, Jiang Y N, Gökçinar Ö Ö, Tang J B, Yu Q Y, Zhang M, Yu K 2020 Chem. Mater. 32 4574Google Scholar

    [36]

    Montanarella F, Akkerman Q A, Bonatz D, van der Sluijs M M, van der Bok J C, Prins P T, Aebli M, Mews A, Vanmaekelbergh D, Kovalenko M V 2023 Nano Lett. 23 667Google Scholar

    [37]

    Xu Z S, Yang Y J, Wang P, Liu X F, Qiu J R 2024 Ceram. Int. 50 8952Google Scholar

    [38]

    Kovalenko M V, Protesescu L, Bodnarchuk M I 2017 Science 358 745Google Scholar

  • [1] Chen Xue-Lian, Jiao Hu-Po, Shen Yan-Bing, Pan Xi-Qiang. Preparation and formation process of high efficient and stable CsPbBr3-Cs4PbBr6 nanocrystals with mixed phase. Acta Physica Sinica, 2023, 72(9): 097801. doi: 10.7498/aps.72.20230066
    [2] Fang Cheng, Wang Hong, Shi Si-Qi. Research progress of synthesis of high-performance perovskites and its derivatives based on polyhedral distortion. Acta Physica Sinica, 2023, 72(18): 186101. doi: 10.7498/aps.72.20230947
    [3] Chen Xue-Lian, Ju Bo, Jiao Hu-Po, Li Yan, Zhong Yu-Jie. Preparation of CsPbBr3 perovskite nanocrystals with controllable morphology and in-situ photoluminescence of formation kinetics. Acta Physica Sinica, 2022, 71(9): 096802. doi: 10.7498/aps.71.20212228
    [4] Zhi Chao-Hu, Liu Bo, Ren Ding, Yang Bin, Lin Li-Wei. Microstructure evolution of W(Mo)/Cu nanometer multilayer films under He+ ion irradiation. Acta Physica Sinica, 2013, 62(15): 156801. doi: 10.7498/aps.62.156801
    [5] Wang Ling, Wang He-Jin, Li Ting. In situ high temperature X-ray diffraction study of anatase and rutile. Acta Physica Sinica, 2013, 62(14): 146402. doi: 10.7498/aps.62.146402
    [6] Wang Tao, Li Jun-Jie, Wang Jin-Cheng. Phase field modeling of the influence of interfacial wettability and solid volume fraction on the kinetics of coarsening. Acta Physica Sinica, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [7] Sun Guang-Ai, Wang Hong, Wang Xiao-Lin, Chen Bo, Chang Li-Li, Liu Yao-Guang, Sheng Liu-Si, Woo Wanchuck, Kang Mi-Hyun. Insitu neutron diffraction study of micromechanical interaction and phase transformation in dual phase NiTi alloy during tensile loading. Acta Physica Sinica, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [8] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [9] Yan Guan-Yun, Tian Qiang, Huang Chao-Qiang, Gu Xiao-Min, Sun Guang-Ai, Chen Bo, Huang Ming, Nie Fu-De, Liu Yi, Li Xiu-Hong. A small-angle X-ray scattering study of micro-defects in thermally treated HMX. Acta Physica Sinica, 2012, 61(13): 136101. doi: 10.7498/aps.61.136101
    [10] Ding Hang-Chen, Shi Si-Qi, Jiang Ping, Tang Wei-Hua. First-principles investigation on the phase transitions of BiFeO3. Acta Physica Sinica, 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [11] Zhou Nai-Gen, Zhou Lang. Prevention of misfit dislocations by using nano pillar crystal array substrates. Acta Physica Sinica, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [12] Bai Suo-Zhu, Yao Bin, Zheng Da-Fang, Xing Guo-Zhong, Su Wen-Hui. Structural characterization and phase transition of an unknown phase of boron carbon nitride compound. Acta Physica Sinica, 2006, 55(11): 5740-5744. doi: 10.7498/aps.55.5740
    [13] Lao Ji-Jun, Hu Xiao-Ping, Yu Xiao-Jiang, Li Ge-Yang, Gu Ming-Yuan. Phase transformation of AlN in AlN/VN nanomultilayers and its effect on the mech anical properties of films. Acta Physica Sinica, 2003, 52(9): 2259-2263. doi: 10.7498/aps.52.2259
    [14] Zhao Xiao-Peng, Gao Xiu-Min, Gao Xiang-Yang, Gao Dan-Jun. Phase transition of solid-liquid electrorheological system in flow percess. Acta Physica Sinica, 2003, 52(2): 405-410. doi: 10.7498/aps.52.405
    [15] Li Jie, Gao Xiao-Hui, Jiang Shu-Fen, Wang Hao, Wang Xiao-Gang, Gao De. . Acta Physica Sinica, 1995, 44(6): 949-957. doi: 10.7498/aps.44.949
    [16] Zhang Liu-Wan, Cai Pei-Xin, Chen Ting-Guo. . Acta Physica Sinica, 1995, 44(7): 1148-1157. doi: 10.7498/aps.44.1148
    [17] HU JIN-YUAN. KINETIC STUDY OF (Ba1-x,Pbx)TiO3 SOLID SOLUTION FORMATION. Acta Physica Sinica, 1991, 40(4): 588-595. doi: 10.7498/aps.40.588
    [18] HU JIN-YUAN. KINETICS OF SECOND PHASE Ba6Ti17O40 FORMATION. Acta Physica Sinica, 1991, 40(9): 1485-1491. doi: 10.7498/aps.40.1485
    [19] XU YING-FAN, WANG WEN-KUI. FORMATION OF BULK METALLIC GLASS OF Pd-Ni-P AND TRANSFORMATION KINETICS. Acta Physica Sinica, 1990, 39(4): 555-560. doi: 10.7498/aps.39.555
    [20] Zhao Zong-yuan, Chen Li-quan. MUTUAL EFFECT ON PHASE TRANSITION TEMPERATURES OF TWO PHASES IN AgI(α-Fe2O3) COMPOSITION ELECTROLYTES. Acta Physica Sinica, 1986, 35(9): 1158-1163. doi: 10.7498/aps.35.1158
  • supplement 2024年第73卷096801补充材料.pdf supplement
Metrics
  • Abstract views:  2601
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  04 February 2024
  • Accepted Date:  05 March 2024
  • Available Online:  08 March 2024
  • Published Online:  05 May 2024

/

返回文章
返回