-
用磁控溅射技术制备不同调幅波长 (L) 的W(Mo)/Cu纳米多层膜,所制膜系在60 keV氦离子 (He+) 辐照条件下注入不同剂量: 0, 11017 He+/cm2, 51017 He+/cm2. 用X射线衍射仪 (XRD) 和高分辨透射电子显微镜(TEM)表征W(Mo)/Cu纳米多层膜辐照前后微观结构. 研究结果表明: 1) He+离子轰击引起温升效应是导致沉积态亚稳相-W 转变成稳态 -W相的主因, 而与调幅波长无明确关联; 2) 纳米多层结构中W(Mo) 和Cu膜显现出的辐照耐受性与调幅波长相关, 调幅波长越小, 抗He+的辐照性能越强; 3) 在51017 He+/cm2注入条件下, 观察到He团簇/泡在纳米结构W(Mo) 和Cu膜中的积聚行为存在明显差异: 在W (Mo) 膜中He团簇/泡的分布与晶粒取向相关, He团簇/泡倾向于沿W (211) 晶面分布; 而Cu膜非晶化且He团簇/泡在其体内呈均匀分布.
-
关键词:
- W(Mo)/Cu纳米多层膜 /
- He+辐照 /
- He团簇/泡 /
- 相转变
W(Mo, 9.8 at.%)/Cu nanometer multilayer films of different individual layer thickness were prepared by RF magnetron sputtering, which were irradiated by 60 keV He+ ions at ion fluence from 0 to 51017 He+/cm2. Microstructures of nanometer multilayer W(Mo)/Cu films were investigated by high-resolution transmission electron microscope (HRTEM) and X-ray diffraction (XRD) before and after irradiation. Experimental results indicate that: (1) The phase transformation of -W (A-15) into steady state -W can be attributed to the bombardment effect of energetic He ions on the surface of films, leading to phase-transition temperature during irradiation. (2) The irradiation tolerance of W(Mo)/Cu multilayer film was found to depend on the individual layer thickness. (3) At the fluence of 51017 He+/cm2, the HRTEM results reveal that the behavior of helium cluster/bubble in the W(Mo) film is obviously different from that in the Cu film. It is interesting that the distribution of helium cluster/bubble is related to the grain orientation of W(Mo) film and tends to distribute along W (211) plane. However, Cu film is completely amorphized and helium cluster/bubble is evenly distributed in it.-
Keywords:
- W(Mo)/Cu nanometer multilayer film /
- He+ irradiation /
- helium cluster/bubble /
- phse transformation
[1] Guo S Q, Feng Y B, Yan Q Z, Li J 2010 Welding Technology 39 9 (in Chinese) [郭双全, 冯云彪, 燕青芝, 黎健 2010 焊接技术 39 9]
[2] Wu J H, Zhang F, Xu Z Y, Yan J C 2003 Nuclear Science and Engineering 23 132 (in Chinese) [吴继红, 张斧, 许增裕, 严建成 2003 核科学与工程 23 132]
[3] Hao J K 2007 Fusion reactor materials (Vol.1) (Beijing: Chemical Industry Press) p15 (in Chinese) [郝嘉琨 2007 聚变堆材料 (1版) (北京: 化学工业出版社) 第15页]
[4] Rose M, Balogh A G, Hahn H 1997 Nucl. Instr. Methods B 127-128 119
[5] Kilmametov A R, Gunderov D V, Valiev R Z, Baloghc A G, Hahn H 2008 Scr. Mater. 59 1027
[6] Li N, Fu E G, Wang H, Carter J J, Shao L, Maloy S A, Misra A, Zhang X 2009 J. Nuclear Materials. 389 233
[7] Gao Y, Yang T F, Xue J M, Yan S, Zhou S Q, Wang Y G, Chu P K, Zhang Y W 2011 J. Nuclear Materials. 413 11
[8] Li N, Yu K Y, Lee J, Wang H, Zhang X 2010 Appl. Phys. 107 093503
[9] Haseeb A S M A, Albers U, Bade K 2008 Science. Direct. 264 106
[10] Hchbauer T, Misra A, Hattar K, Hoagland R G 2005 J. Appl. Phys. 98 123516
[11] Wang Y C, Misra A, Hoagland R G 2006 Scr. Mater. 54 1593
[12] Shen T D, Feng S H, Tang M, Valdez J A, Wang Y Q 2007 Appl. Phys. Lett. 90 263115
[13] Samaras M, Derlet P M, Van Swygenhoven H, Victoria M 2002 Phys. Rev. Lett. 88 125505
[14] Demkowicz M J, Hoagland R G, Hirth J P 2008 Phys. Rev. Lett. 100 136102
[15] Tang L L, Kuang Y G, Chen F X, Zhang B H, Gan L 2011 Powder Metallurgy Industry. 21 6 (in Chinese) [唐亮亮, 邝用庚, 陈飞雄, 张保红, 甘乐 2011 粉末冶金工业 21 6]
[16] Liu M X, Hu Y F, Ma F, Xu K W 2008 Acta Metallurgica.Sinica. 44 631 (in Chinese) [刘明霞, 胡永峰, 马飞, 徐可为 2008 金属学报 44 631]
[17] O’Keefe M J, Grant J T, Solomon J S 1995 J. Appl. Phys. 79 12
[18] Petroff P, Sheng T T, Sinha A K, Rozgonyi A K, Alexander G A 1973 J. Appl. Phys. 44 6
[19] Wen Y N 2007 M.B.A. Dissertation (Xi’an: Shaanxi Normal University) (in Chinese) [文艳妮 2007 硕士学位论文 (西安: 陕西师范大学)]
[20] Masato Yamagiwa, Shin Kajita, Noriyasu Ohno, Makoto Takagi, Naoaki Yoshida, Reiko Yoshihara, Wataru Sakaguchi, Hiroaki Kurishita 2011 Nuclear. Materials. 417 499
-
[1] Guo S Q, Feng Y B, Yan Q Z, Li J 2010 Welding Technology 39 9 (in Chinese) [郭双全, 冯云彪, 燕青芝, 黎健 2010 焊接技术 39 9]
[2] Wu J H, Zhang F, Xu Z Y, Yan J C 2003 Nuclear Science and Engineering 23 132 (in Chinese) [吴继红, 张斧, 许增裕, 严建成 2003 核科学与工程 23 132]
[3] Hao J K 2007 Fusion reactor materials (Vol.1) (Beijing: Chemical Industry Press) p15 (in Chinese) [郝嘉琨 2007 聚变堆材料 (1版) (北京: 化学工业出版社) 第15页]
[4] Rose M, Balogh A G, Hahn H 1997 Nucl. Instr. Methods B 127-128 119
[5] Kilmametov A R, Gunderov D V, Valiev R Z, Baloghc A G, Hahn H 2008 Scr. Mater. 59 1027
[6] Li N, Fu E G, Wang H, Carter J J, Shao L, Maloy S A, Misra A, Zhang X 2009 J. Nuclear Materials. 389 233
[7] Gao Y, Yang T F, Xue J M, Yan S, Zhou S Q, Wang Y G, Chu P K, Zhang Y W 2011 J. Nuclear Materials. 413 11
[8] Li N, Yu K Y, Lee J, Wang H, Zhang X 2010 Appl. Phys. 107 093503
[9] Haseeb A S M A, Albers U, Bade K 2008 Science. Direct. 264 106
[10] Hchbauer T, Misra A, Hattar K, Hoagland R G 2005 J. Appl. Phys. 98 123516
[11] Wang Y C, Misra A, Hoagland R G 2006 Scr. Mater. 54 1593
[12] Shen T D, Feng S H, Tang M, Valdez J A, Wang Y Q 2007 Appl. Phys. Lett. 90 263115
[13] Samaras M, Derlet P M, Van Swygenhoven H, Victoria M 2002 Phys. Rev. Lett. 88 125505
[14] Demkowicz M J, Hoagland R G, Hirth J P 2008 Phys. Rev. Lett. 100 136102
[15] Tang L L, Kuang Y G, Chen F X, Zhang B H, Gan L 2011 Powder Metallurgy Industry. 21 6 (in Chinese) [唐亮亮, 邝用庚, 陈飞雄, 张保红, 甘乐 2011 粉末冶金工业 21 6]
[16] Liu M X, Hu Y F, Ma F, Xu K W 2008 Acta Metallurgica.Sinica. 44 631 (in Chinese) [刘明霞, 胡永峰, 马飞, 徐可为 2008 金属学报 44 631]
[17] O’Keefe M J, Grant J T, Solomon J S 1995 J. Appl. Phys. 79 12
[18] Petroff P, Sheng T T, Sinha A K, Rozgonyi A K, Alexander G A 1973 J. Appl. Phys. 44 6
[19] Wen Y N 2007 M.B.A. Dissertation (Xi’an: Shaanxi Normal University) (in Chinese) [文艳妮 2007 硕士学位论文 (西安: 陕西师范大学)]
[20] Masato Yamagiwa, Shin Kajita, Noriyasu Ohno, Makoto Takagi, Naoaki Yoshida, Reiko Yoshihara, Wataru Sakaguchi, Hiroaki Kurishita 2011 Nuclear. Materials. 417 499
计量
- 文章访问数: 6039
- PDF下载量: 489
- 被引次数: 0