Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vibrational thermal pool multi-level theoretical model and design simulation of HBr-filled hollow-core fiber gas laser

Wei Chao Yu Xuan Lei Cheng Wang Zi-Yu Liu Sheng Wang Du

Citation:

Vibrational thermal pool multi-level theoretical model and design simulation of HBr-filled hollow-core fiber gas laser

Wei Chao, Yu Xuan, Lei Cheng, Wang Zi-Yu, Liu Sheng, Wang Du
PDF
HTML
Get Citation
  • The hollow-core fiber gas laser (HCFGL) has developed into a significant mid-infrared laser source, but the development of theoretical model still lags behind experimental progress. In this work, we propose a multi-level vibrational thermal pool (VTP) model of HBr-filled HCFs, which comprehensively considers the rovibrational relaxation effects on laser gain in reasonable approximations of transition coefficients, and studies the laser characteristics on multi-line lasing, bottleneck effect, line competition, etc. The VTP model shows more precise results of laser slope efficiency, and threshold than previous models while fitting the experimental data very well, and successfully predicts an output bottleneck at 1 W pump. The P-branch laser is relatively advantageous over the R-branch laser for its larger Einstein $A$ coefficient and emission cross section, and the seed injection can intensify the line competition and reach the highest P4 power proportion of 80%. The VTP model reveals that the output of various pump lines has a pattern similar to the Boltzmann distribution, suggesting that the distribution of ground rotational levels limits the laser gain of pump lines. Moreover, we discuss the photon leakage in high-energy pulsed pumping conditions. With the introduction of the leaking coefficient, this model shows relaxation oscillations and laser slope efficiencies close to experimental values and greater than the results in the CW condition, and solves the overpump problem in pulsed pump simulation. Finally, we confirm that the photon leakage is intensified at high repetition rate and the leaking coefficient should relate to the pulse repetition rate. This work develops a comprehensive modeling method for MIR laser simulation and this model is also applicable to various gas-filled HCFGLs.
      Corresponding author: Wang Du, wdxz@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075200, 12374295) and the Fundamental Research Funds for the Central Universitie, China (Grant Nos. 2042022gf0004, 2042023kf0113).
    [1]

    Ycas G, Giorgetta F R, Baumann E, Coddington I, Herman D, Diddams S A, Newbury N R 2018 Nat. Photonics 12 202Google Scholar

    [2]

    Wang Z F, Zhou Z Y, Li Z X, Zhang N Q, Chen Y B 2016 Proceedings of the SPIE, Infrared, Millimeter-Wave, and Terahertz Technologies IV Beijing, China, October 12–14, 2016 p96

    [3]

    Lei W, Jagadish C 2008 J. Appl. Phys. 104 091101Google Scholar

    [4]

    Guo B P, Wang Y, Peng C, Luo G, Le H Q 2003 Proceedings of the SPIE, Spectral Imaging: Instrumentation, Applications, and Analysis II March, 2003 p1

    [5]

    Naithani S 2014 J. Laser Micro Nanoen. 9 147Google Scholar

    [6]

    Seddon A B 2011 Int. J. Appl. Glass Sci. 2 177Google Scholar

    [7]

    Austin D R, Kafka K R P, Lai Y H, Wang Z, Blaga C I, Chowdhury E A 2018 Opt. Lett. 43 3702Google Scholar

    [8]

    Wang Y Q, Fang J N, Zheng T T, Liang Y, Hao Q, Wu E, Yan M, Huang K, Zeng H P 2021 Laser Photonics Rev. 15 2100189Google Scholar

    [9]

    Kletecka C S, Campbell N, Jones C R, Nicholson J W, Rudolph W 2004 IEEE J. Quantum Electron. 40 1471Google Scholar

    [10]

    Ratanavis A, Campbell N, Nampoothiri A V V, Rudolph W 2009 IEEE J. Quantum Electron. 45 488Google Scholar

    [11]

    Koen W, Jacobs C, Bollig C, Strauss H J, Daniel Esser M J, Botha L R 2014 Opt. Lett. 39 3563Google Scholar

    [12]

    Fan G, Balčiūnas T, Kanai T, Flöry T, Andriukaitis G, Schmidt B E, Légaré F, Baltuška A 2016 Optica 3 1308Google Scholar

    [13]

    Peng X, Mielke M, Booth T 2011 Opt. Express 19 923Google Scholar

    [14]

    Michieletto M, Lyngsø J K, Jakobsen C, Lægsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103Google Scholar

    [15]

    Debord B, Amsanpally A, Chafer M, Baz A, Maurel M, Blondy J M, Hugonnot E, Scol F, Vincetti L, Gérôme F, Benabid F 2017 Optica 4 209Google Scholar

    [16]

    Carcreff J, Cheviré F, Galdo E, Lebullenger R, Gautier A, Adam J L, Coq D L, Brilland L, Chahal R, Renversez G, Troles J 2021 Opt. Mater. Express 11 198Google Scholar

    [17]

    Wang F, Lee J, Phillips D J, Holliday S G, Chua S L, Bravo-Abad J, Joannopoulos J D, Soljačić M, Johnson S G, Everitt H O 2018 Proc. Natl. Acad. Sci. 115 6614Google Scholar

    [18]

    Chevalier P, Amirzhan A, Wang F, Piccardo M, Johnson S G, Capasso F, Everitt H O 2019 Science 366 856Google Scholar

    [19]

    Chevalier P, Amirzhan A, Rowlette J, Stinson H T, Pushkarsky M, Day T, Capasso F, Everitt H O 2022 Appl. Phys. Lett. 120 081108Google Scholar

    [20]

    Lane R A, Madden T J 2018 Opt. Express 26 15693Google Scholar

    [21]

    Zhou Z Y, Huang W, Cui Y L, Li H, Pei W X, Wang M, Wang Z F 2023 Opt. Express 31 4739Google Scholar

    [22]

    Zhou Z Y, Cui Y L, Huang W, Li H, Wang M, Gao S F, Wang Y Y, Wang Z F 2023 J. Light. Technol. 41 333Google Scholar

    [23]

    Miller H C, Radzykewycz D T, Hager G 1994 IEEE J. Quantum Electron. 30 2395Google Scholar

    [24]

    Ratanavis A 2010 Ph. D. Dissertation (Albuquerque: The University of New Mexico

    [25]

    Oka T 1974 Advances in Atomic, Molecular, and Optical Physics 9 127Google Scholar

    [26]

    Matteson W, De Lucia F 1983 IEEE J. Quantum Electron. 19 1284Google Scholar

    [27]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transf. 277 107949Google Scholar

  • 图 1  HBr空芯光纤模型与能级跃迁示意图

    Figure 1.  Schematic of HBr-filled HCF and HBr energy level structure.

    图 2  不同气压下光纤输出与泵浦功率分布 (a) 1 mbar; (b) 3 mbar; (c) 5 mbar; (d) 10 mbar

    Figure 2.  Output power of a 5 m long HCF varying with gas pressure: (a) 1 mbar; (b) 3 mbar; (c) 5 mbar; (d) 10 mbar.

    图 3  不同泵浦功率下光纤总输出与气压关系(实线代表VTP模型计算的总输出功率, 虚线代表4能级模型计算的总输出功率) (a) 1 W; (b) 3 W; (c) 5 W; (d) 10 W

    Figure 3.  Output power of a 5 m long HCF varying with pump power: (a) 1 W; (b) 3 W; (c) 5 W; (d) 10 W. The solid line and dashed line represent the total output power obtained by VTP model and 4-level model, respectively.

    图 4  (a) 注入1 mW P4小信号光与不注入时的光纤内部光强分布, 其中实线代表有P4小信号注入时的输出, 虚线代表ASE的输出; (b) 光纤总输出(蓝色实线)与P4光占比(红色虚线)随P4信号光的变化

    Figure 4.  (a) Spatial distribution of laser power. The solid line represents the spatial power distribution with injected P4 signal, and the dashed line represents only ASE; (b) the total output power (blue line) and the proportion of P4 emission (red dashed line) varying with seed power.

    图 5  不同泵浦谱线在10 W功率下的输出(x轴代表泵浦谱线, y轴代表输出功率, 柱状图代表相应的4 μm频点输出谱线, 红色曲线代表总输出功率) (a) R分支泵浦谱线输出; (b) P分支泵浦谱线输出

    Figure 5.  Output power of different pump lines with 10 W pump power: (a) The output power of R-branch pump lines; (b) the output of P-branch pump lines. The x axis denotes the pump line, the y axis represents the output power, the bars represent the output lines in the 4 μm band, and the red line represent the total output power.

    图 6  (a)光纤内部1, 2, 3, 4, 5 m处的归一化脉冲波形, 其中蓝色为泵浦光, 红色为总输出波形; (b)在5 mbar下5 W泵浦时光纤内部的光功率分布

    Figure 6.  (a) Normalized pulse shape at 1, 2, 3, 4, 5 m of the HCF; (b) the spatial power distribution in HCF under 5 mbar with 5 W pump

    图 7  (a) 脉冲激光在不同气压下输出功率与吸收功率的关系; (b) 脉冲激光在不同泵浦功率下输出与气压的关系

    Figure 7.  (a) Output power varying with pulsed pump power under different gas pressure; (b) the output power varying with gas pressure under difference pump power.

    图 8  脉冲HCFGL的输出功率、半峰全宽与泵浦重频的关系, 其中绿色和蓝色实线代表残余泵浦光与总输出光的功率, 红色虚线代表总输出光的半峰全宽

    Figure 8.  Output power and FWHM of HCFGL pulse varying with repetition rate. The green and blue line represent the residual pump power and total output laser power varying with repetition rate, respectively; the dashed red line represent the FWHM of output laser varying with repetition rate.

    表 1  10 mbar下HBr气体分子R2泵浦谱线的常数(k, A, $\varOmega $)、光纤的损耗系数($\alpha $)

    Table 1.  Constants (k, A, $\varOmega $) of HBr molecule with R2 pumping at 10 mbar and absorption coefficients ($\alpha $) of HCF.

    常数 取值 常数 取值
    ${k_{10}}$/s–1 5×107 ${A_{{\text{pump}}}}$/s–1 0.14
    ${k_{21}}$/s–1 1×107 ${A_{\text{P}}}$/s–1 8.56
    ${k_{20}}$/s–1 2.5×106 ${A_{\text{R}}}$/s–1 5.91
    ${k_{{\text{ro1}}}}$/s–1 7.5×107 $\varOmega $ 10–7
    ${k_{{\text{ro2}}}}$/s–1 7.5×107 ${\alpha _{{\text{pump}}}}$/(dB·m–1) 0.53
    ${k_{{\text{ro3}}}}$/s–1 7.5×106 ${\alpha _{\text{P}}}$/(dB·m–1) 0.3
    ${k_{{\text{ro4}}}}$/s–1 7.5×107 ${\alpha _{\text{R}}}$/(dB·m–1) 0.3
    DownLoad: CSV
  • [1]

    Ycas G, Giorgetta F R, Baumann E, Coddington I, Herman D, Diddams S A, Newbury N R 2018 Nat. Photonics 12 202Google Scholar

    [2]

    Wang Z F, Zhou Z Y, Li Z X, Zhang N Q, Chen Y B 2016 Proceedings of the SPIE, Infrared, Millimeter-Wave, and Terahertz Technologies IV Beijing, China, October 12–14, 2016 p96

    [3]

    Lei W, Jagadish C 2008 J. Appl. Phys. 104 091101Google Scholar

    [4]

    Guo B P, Wang Y, Peng C, Luo G, Le H Q 2003 Proceedings of the SPIE, Spectral Imaging: Instrumentation, Applications, and Analysis II March, 2003 p1

    [5]

    Naithani S 2014 J. Laser Micro Nanoen. 9 147Google Scholar

    [6]

    Seddon A B 2011 Int. J. Appl. Glass Sci. 2 177Google Scholar

    [7]

    Austin D R, Kafka K R P, Lai Y H, Wang Z, Blaga C I, Chowdhury E A 2018 Opt. Lett. 43 3702Google Scholar

    [8]

    Wang Y Q, Fang J N, Zheng T T, Liang Y, Hao Q, Wu E, Yan M, Huang K, Zeng H P 2021 Laser Photonics Rev. 15 2100189Google Scholar

    [9]

    Kletecka C S, Campbell N, Jones C R, Nicholson J W, Rudolph W 2004 IEEE J. Quantum Electron. 40 1471Google Scholar

    [10]

    Ratanavis A, Campbell N, Nampoothiri A V V, Rudolph W 2009 IEEE J. Quantum Electron. 45 488Google Scholar

    [11]

    Koen W, Jacobs C, Bollig C, Strauss H J, Daniel Esser M J, Botha L R 2014 Opt. Lett. 39 3563Google Scholar

    [12]

    Fan G, Balčiūnas T, Kanai T, Flöry T, Andriukaitis G, Schmidt B E, Légaré F, Baltuška A 2016 Optica 3 1308Google Scholar

    [13]

    Peng X, Mielke M, Booth T 2011 Opt. Express 19 923Google Scholar

    [14]

    Michieletto M, Lyngsø J K, Jakobsen C, Lægsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103Google Scholar

    [15]

    Debord B, Amsanpally A, Chafer M, Baz A, Maurel M, Blondy J M, Hugonnot E, Scol F, Vincetti L, Gérôme F, Benabid F 2017 Optica 4 209Google Scholar

    [16]

    Carcreff J, Cheviré F, Galdo E, Lebullenger R, Gautier A, Adam J L, Coq D L, Brilland L, Chahal R, Renversez G, Troles J 2021 Opt. Mater. Express 11 198Google Scholar

    [17]

    Wang F, Lee J, Phillips D J, Holliday S G, Chua S L, Bravo-Abad J, Joannopoulos J D, Soljačić M, Johnson S G, Everitt H O 2018 Proc. Natl. Acad. Sci. 115 6614Google Scholar

    [18]

    Chevalier P, Amirzhan A, Wang F, Piccardo M, Johnson S G, Capasso F, Everitt H O 2019 Science 366 856Google Scholar

    [19]

    Chevalier P, Amirzhan A, Rowlette J, Stinson H T, Pushkarsky M, Day T, Capasso F, Everitt H O 2022 Appl. Phys. Lett. 120 081108Google Scholar

    [20]

    Lane R A, Madden T J 2018 Opt. Express 26 15693Google Scholar

    [21]

    Zhou Z Y, Huang W, Cui Y L, Li H, Pei W X, Wang M, Wang Z F 2023 Opt. Express 31 4739Google Scholar

    [22]

    Zhou Z Y, Cui Y L, Huang W, Li H, Wang M, Gao S F, Wang Y Y, Wang Z F 2023 J. Light. Technol. 41 333Google Scholar

    [23]

    Miller H C, Radzykewycz D T, Hager G 1994 IEEE J. Quantum Electron. 30 2395Google Scholar

    [24]

    Ratanavis A 2010 Ph. D. Dissertation (Albuquerque: The University of New Mexico

    [25]

    Oka T 1974 Advances in Atomic, Molecular, and Optical Physics 9 127Google Scholar

    [26]

    Matteson W, De Lucia F 1983 IEEE J. Quantum Electron. 19 1284Google Scholar

    [27]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transf. 277 107949Google Scholar

  • [1] Mi Hao-Ting, Yang An-Ping, Huang Zi-Xuan, Tian Kang-Zhen, Li Yue-Bing, Ma Cheng, Liu Zi-Jun, Shen Xiang, Yang Zhi-Yong. Preparation and properties of Ga2S3-Sb2S3-Ag2S chalcogenide glasses and fibers. Acta Physica Sinica, 2023, 72(4): 047101. doi: 10.7498/aps.72.20221380
    [2] Zhou Zi-Xin, Huang Yin-Bo, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song. Design and experiment of re-injection off-axis integrated cavity output spectroscopy technology in 2 μm band. Acta Physica Sinica, 2019, 68(12): 129201. doi: 10.7498/aps.68.20190061
    [3] Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing. A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Physica Sinica, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [4] Wang Shao-Qi, Deng Ying, Zhang Yong-Liang, Li Chao, Wang Fang, Kang Min-Qiang, Luo Yun, Xue Hai-Tao, Hu Dong-Xia, Su Jing-Qin, Zheng Kui-Xing, Zhu Qi-Hua. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser. Acta Physica Sinica, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [5] Zhang Li-Meng, Hu Ming-Lie, Gu Cheng-Lin, Fan Jin-Tao, Wang Qing-Yue. High power red to mid-infrared laser source from intracavity sum frequency optical parametric oscillator pumped by femtosecond fiber laser. Acta Physica Sinica, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [6] Zhang Xue-Zhi, Feng Ming, Zhang Xin-Zheng. All-optical diode in mid-infrared waveband based on self-phase modulation effect in silicon ring resonator. Acta Physica Sinica, 2013, 62(2): 024201. doi: 10.7498/aps.62.024201
    [7] Shi Li-Chao, Zhang Wei, Jin Jie, Huang Yi-Dong, Peng Jiang-De. Fabrication of mid-infrared hollow-core Bragg fiber and it application in gas sensing. Acta Physica Sinica, 2012, 61(5): 054214. doi: 10.7498/aps.61.054214
    [8] Tang Yuan-Yuan, Liu Wen-Qing, Kan Rui-Feng, Zhang Yu-Jun, Liu Jian-Guo, Xu Zhen-Yu, Shu Xiao-Wen, Zhang Shuai, He Ying, Geng Hui, Cui Yi-Ben. Spectroscopy processing for the NO measurement based on the room-temperature pulsed quantum cascade laser. Acta Physica Sinica, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [9] Xing Wen-Xin, Zhang Wei, Shi Li-Chao, Wang Wen, Zhao Hong, Li Zhi-Guang, Huang Yi-Dong, Peng Jiang-De. Mid-infrared hollow-core Bragg fiber for trace gas detection. Acta Physica Sinica, 2010, 59(12): 8640-8645. doi: 10.7498/aps.59.8640
    [10] Wang Hao, Liu Guo-Quan, Yue Jing-Chao, Luan Jun-Hua, Qin Xiang-Ge. Study on MacPherson-Srolovitz's grain growth rate equation with Monte Carlo simulation. Acta Physica Sinica, 2009, 58(13): 137-S140. doi: 10.7498/aps.58.137
    [11] Wang Ying, Zhang Yue-Guang, Liu Xu, Chen Wei-Lan, Li Yi-Yu. Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings. Acta Physica Sinica, 2007, 56(11): 6588-6591. doi: 10.7498/aps.56.6588
    [12] Song Feng, Meng Fan-Zhen, Ding Xin, Zhang Chao-Bo, Yang Jia, Zhang Guang-Yin. . Acta Physica Sinica, 2002, 51(6): 1233-1238. doi: 10.7498/aps.51.1233
    [13] Liu Xiao-Dong, Li Shu-Guang, Hou Lan-Tian, Wang Hui-Tian. . Acta Physica Sinica, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
    [14] Liu Xiao-Dong, Li Shu-Guang, Hou Lan-Tian, Wang Hui-Tian, Min Nai-Ben. . Acta Physica Sinica, 2002, 51(9): 2117-2122. doi: 10.7498/aps.51.2117
    [15] Yu Jian-Hua, Lai Jian-Jun, Huang Jian-Jun, Wang Xin-Bin, Qui Jun-Lin. . Acta Physica Sinica, 2002, 51(9): 2080-2085. doi: 10.7498/aps.51.2080
    [16] TIAN ZHAO-SHUO, WANG QI, LI ZI-QIN, WANG YU-SAN. COMPARISON BETWEEN THE THEORIES OF SIX-TEMPERATURE MODEL AND THE RATE EQUATION FOR Q-SWITCHED CO2 LASER. Acta Physica Sinica, 2001, 50(12): 2369-2374. doi: 10.7498/aps.50.2369
    [17] LAI JIAN-JUN, YU JIAN-HUA, HUANG JIAN-JUN, WANG XIN-BING, QIU JUN-LIN. SELF-CONSISTENT DESCRIPTION OF A DC HOLLOW CATHODE DISCHARGE AND ANALYSIS OF CATHODE SPUTTERING. Acta Physica Sinica, 2001, 50(8): 1528-1533. doi: 10.7498/aps.50.1528
    [18] ZHANG YI, HUANG YONG-ZHEN, WU RONG-HAN. ANALYSIS OF THE NOISE IN VCSEL USING RATE EQUATION. Acta Physica Sinica, 1998, 47(2): 232-238. doi: 10.7498/aps.47.232
    [19] SONG FENG, YAO JIAN-QUAN, QIAO JIN-YUAN, CHEN XIAO-BO, ZHANG GUANG-YIN. THE THEORY AND NUMERICAL CALCULATION OF RATE EQUATIONS FOR DUAL WAVELENGTH PULSED LASERS. Acta Physica Sinica, 1997, 46(9): 1725-1730. doi: 10.7498/aps.46.1725
    [20] ZHANG YI-XIANG, WANG TING-YUAN, ZHANG ZHI-GUO. THE SEGMENTED EQUIVALENT CIRCUITS AND RATE EQUATIONS OF A NITROGEN LASER. Acta Physica Sinica, 1979, 28(1): 125-131. doi: 10.7498/aps.28.125
Metrics
  • Abstract views:  755
  • PDF Downloads:  22
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2024
  • Accepted Date:  15 June 2024
  • Available Online:  18 June 2024
  • Published Online:  05 August 2024

/

返回文章
返回