-
Single-domain Y-Ba-Cu-O (YBCO) bulk superconductors can be widely used in the superconducting maglev, cryomagnets, motors/generators fields. In order to improve the performance of the YBCO bulk superconductors further, in this work, nano-CeO2 doped YBCO bulk superconductors are fabricated by two infiltration growth techniques (011-IG and 211-IG) respectively, in which two solid pellets of compositions Y2O3+1.15BaCuO2+0.1CuO+1wt.% nano-CeO2 and Y2BaCuO5 (Y-211)+1 wt.% nano-CeO2 are employed. And a novel pit-type seeding mode is used to prevent the film seed from moving in the heat treatment process, then the growth morphologies, microstructures and superconducting properties of the samples are investigated. The results show that at a low doping level (1 wt.%), the normal growth of the YBCO crystal is not affected, and fully-grown single-domain YBCO bulk superconductors can be successfully prepared by the two techniques. Furthermore, the positions of the seeds do not move at all, which proves the effectiveness of the new seeding mode. The perpendicular growth sector boundaries on the top surfaces of the samples and clear (00l) series X-ray diffraction (XRD) peaks both prove the high c-axis orientations and high growth quality of the samples. The scanning electron microscopy (SEM) results indicate that the nano-CeO2 doping can effectively refine the sizes of the Y-211 micro-particles in the bulk superconductors, and this method is applicable to both techniques. Low-temperature magnetization measurement shows that the nano-CeO2 doped sample prepared by the 011-IG method shows obviously better Jc property than the undoped sample at low fields, indicating that the refined Y-211 particles can effectively enhance the δl-type pinning. In addition, compared with the 211-IG-processed sample, the 011-IG-processed sample performs better in terms of levitation force, microstructure and Jc property, thus the 011-IG method is a more promising preparation process. The results of this study are important in improving the performance of the YBCO bulk superconductors and optimizing the fabrication technique further.
-
Keywords:
- single-domain Y-Ba-Cu-O /
- infiltration growth /
- nano-CeO2 doping /
- superconducting property
[1] Durrell J H, Ainslie M D, Zhou D, Vanderbemden P, Bradshaw T, Speller S, Filipenko M, Cardwell D A 2018 Supercond. Sci. Technol. 31 103501Google Scholar
[2] Kenfaui D, Sibeud P F, Louradour E, Chaud X, Noudem J G 2014 Adv. Funct. Mater. 24 3996Google Scholar
[3] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭 2013 物理学报 62 227401Google Scholar
Ma J, Yang W M, Wang M, Chen S L, Feng Z L 2013 Acta Phys. Sin. 62 227401Google Scholar
[4] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟 2018 物理学报 67 077401Google Scholar
Ma J, Chen Z L, Xian T, Wei X G, Yang W M, Chen S L, Li J W 2018 Acta Phys. Sin. 67 077401Google Scholar
[5] 李国政, 杨万民 2010 物理学报 59 5028Google Scholar
Li G Z, Yang W M 2010 Acta Phys. Sin. 59 5028Google Scholar
[6] Yang W M, Zhi X, Chen S L, Wang M, Li J W, Ma J, Chao X X 2014 Physica C 496 1Google Scholar
[7] Yang P T, Yang W M, Chen J L 2017 Supercond. Sci. Technol. 30 085003Google Scholar
[8] Yang P, Fagnard J F, Vanderbemden P, Yang W 2019 Supercond. Sci. Technol. 32 115015Google Scholar
[9] Wang M, Liu Y, Wang X, Xian H, Yang W 2021 Crystals 11 150Google Scholar
[10] Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004Google Scholar
[11] Yang P, Yang W, Zhang L, Chen L 2018 Supercond. Sci. Technol. 31 085005Google Scholar
[12] 李国政, 陈超 2020 物理学报 69 237402Google Scholar
Li G Z, Chen C 2020 Acta Phys. Sin. 69 237402Google Scholar
[13] Li G Z, Wang M 2021 J. Cryst. Growth 570 126198Google Scholar
[14] Li G Z, Wang M 2022 Supercond. Sci. Technol. 35 015005Google Scholar
[15] Li G Z, Wang M 2022 Ceram. Int. 48 25034Google Scholar
[16] Chen S Y, Chen I G, Wu M K 2005 Supercond. Sci. Technol. 18 916Google Scholar
[17] 王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 物理学报 61 196102Google Scholar
Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102Google Scholar
[18] Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar
[19] Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar
[20] 王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰 2012 中国科学: 物理学 力学 天文学 42 346Google Scholar
Wang M, Yang W M, Ma J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin. Phys. Mech. Astron. 42 346Google Scholar
[21] Wang M, Yang W M, Fan J, Li G Z, Zhang X J, Tang Y N, Wang G F 2012 J. Supercond. Novel Magn. 25 867Google Scholar
[22] Wang M, Yang W M, Wang M Z, Wang X J 2013 J. Supercond. Novel Magn. 26 3221Google Scholar
[23] Li G Z, Wang M 2021 Mater. Today Commun. 29 102771Google Scholar
[24] Koblischka M R, Murakami M 2000 Supercond. Sci. Technol. 13 738Google Scholar
-
图 2 (a), (b) 带有顶部方坑或圆坑的固相块的压制方法; (c) 前驱块和薄膜籽晶的装配方法示意图; (d) 用于熔渗生长YBCO单畴样品的热处理方式
Figure 2. (a), (b) Methods for pressing the preforms with the top square pit or round pit; (c) schematic illustration showing the configuration method of the precursor pellets and the film seed; (d) the heat treatment profile used for the IG process of the YBCO single-domain samples.
-
[1] Durrell J H, Ainslie M D, Zhou D, Vanderbemden P, Bradshaw T, Speller S, Filipenko M, Cardwell D A 2018 Supercond. Sci. Technol. 31 103501Google Scholar
[2] Kenfaui D, Sibeud P F, Louradour E, Chaud X, Noudem J G 2014 Adv. Funct. Mater. 24 3996Google Scholar
[3] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭 2013 物理学报 62 227401Google Scholar
Ma J, Yang W M, Wang M, Chen S L, Feng Z L 2013 Acta Phys. Sin. 62 227401Google Scholar
[4] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟 2018 物理学报 67 077401Google Scholar
Ma J, Chen Z L, Xian T, Wei X G, Yang W M, Chen S L, Li J W 2018 Acta Phys. Sin. 67 077401Google Scholar
[5] 李国政, 杨万民 2010 物理学报 59 5028Google Scholar
Li G Z, Yang W M 2010 Acta Phys. Sin. 59 5028Google Scholar
[6] Yang W M, Zhi X, Chen S L, Wang M, Li J W, Ma J, Chao X X 2014 Physica C 496 1Google Scholar
[7] Yang P T, Yang W M, Chen J L 2017 Supercond. Sci. Technol. 30 085003Google Scholar
[8] Yang P, Fagnard J F, Vanderbemden P, Yang W 2019 Supercond. Sci. Technol. 32 115015Google Scholar
[9] Wang M, Liu Y, Wang X, Xian H, Yang W 2021 Crystals 11 150Google Scholar
[10] Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004Google Scholar
[11] Yang P, Yang W, Zhang L, Chen L 2018 Supercond. Sci. Technol. 31 085005Google Scholar
[12] 李国政, 陈超 2020 物理学报 69 237402Google Scholar
Li G Z, Chen C 2020 Acta Phys. Sin. 69 237402Google Scholar
[13] Li G Z, Wang M 2021 J. Cryst. Growth 570 126198Google Scholar
[14] Li G Z, Wang M 2022 Supercond. Sci. Technol. 35 015005Google Scholar
[15] Li G Z, Wang M 2022 Ceram. Int. 48 25034Google Scholar
[16] Chen S Y, Chen I G, Wu M K 2005 Supercond. Sci. Technol. 18 916Google Scholar
[17] 王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 物理学报 61 196102Google Scholar
Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102Google Scholar
[18] Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar
[19] Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar
[20] 王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰 2012 中国科学: 物理学 力学 天文学 42 346Google Scholar
Wang M, Yang W M, Ma J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin. Phys. Mech. Astron. 42 346Google Scholar
[21] Wang M, Yang W M, Fan J, Li G Z, Zhang X J, Tang Y N, Wang G F 2012 J. Supercond. Novel Magn. 25 867Google Scholar
[22] Wang M, Yang W M, Wang M Z, Wang X J 2013 J. Supercond. Novel Magn. 26 3221Google Scholar
[23] Li G Z, Wang M 2021 Mater. Today Commun. 29 102771Google Scholar
[24] Koblischka M R, Murakami M 2000 Supercond. Sci. Technol. 13 738Google Scholar
Catalog
Metrics
- Abstract views: 900
- PDF Downloads: 27
- Cited By: 0