Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hefei Advanced Light Facility: Empowering research of correlated electron systems

Sun Zhe Shen Da-Wei Luo Zhen-Lin Yan Wen-Sheng

Citation:

Hefei Advanced Light Facility: Empowering research of correlated electron systems

Sun Zhe, Shen Da-Wei, Luo Zhen-Lin, Yan Wen-Sheng
cstr: 32037.14.aps.73.20240943
PDF
HTML
Get Citation
  • The Hefei Advanced Light Facility is the fourth-generation diffraction-limited storage ring light source, scheduled to begin operation in 2028. With its high-brightness and highly coherent X-rays, it will break through the current spatiotemporal resolution bottlenecks of X-ray techniques in studying correlated electron systems, providing crucial information for understanding the nature and microscopic origins of novel physical properties in these materials. This article introduces the main scientific goals and technical advantages of the Hefei Advanced Light Facility, focusing on the application perspectives of advanced technologies such as angle-resolved photoemission spectroscopy, magnetic circular dichroism, coherent X-ray scattering, and coherent X-ray imaging in researches of quantum materials and correlated electron systems. These techniques will enable the detailed analysis of the distribution and dynamics of electronic/spin/orbital states, reveal various novel quantum phenomena, and elucidate the fluctuations of order parameters in correlated electron systems. The completion of the Hefei Advanced Light Facility will provide advanced technical supports for decoding complex quantum states and non-equilibrium properties, ultimately promoting the application of quantum materials and correlated electron systems in frontier fields such as energy and information.
      Corresponding author: Sun Zhe, zsun@ustc.edu.cn
    [1]

    Jens Als-Nielsen, Des McMorrow 著 (封东来 译) 2015 现代X光物理原理 (上海: 复旦大学出版社)

    Als-Nielsen J, McMorrow D (translated by Feng D L) 2015 Modern Elements of X-ray Physics (Shanghai: Fudan University Press

    [2]

    麦振洪2013同步辐射光源及其应用 (上卷和下卷) (北京: 科学出版社)

    Mai Z H 2013 Synchrotron Radiation Sources and Applications (Vol. 1 and 2) (Beijing: Science Press

    [3]

    Eberhardt W 2015 J. Electron Spectrosc. 200 31Google Scholar

    [4]

    Eriksson M, van der Veen J F, Quitmann C 2014 J. Synchrotron Radiat. 21 837Google Scholar

    [5]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [6]

    Iwasawa H 2020 Electron. Struct. 2 043001Google Scholar

    [7]

    Lisi S, Lu X B, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E, Hunter A, Tamai A, Kandyba V, Giampietri A, Barinov A, Jobst J, Stalman V, Leeuwenhoek M, Watanabe K, Taniguchi T, Rademaker L, van der Molen S J, Allan M P, Efetov D K, Baumberger F 2021 Nat. Phys. 17 189Google Scholar

    [8]

    Cattelan M, Fox N A 2018 Nanomaterials-Basel 8 284Google Scholar

    [9]

    Mo S K 2017 Nano Converg. 4 6Google Scholar

    [10]

    Chen C T, Sette F, Ma Y, Modesti S 1990 Phys. Rev. B 42 7262Google Scholar

    [11]

    van der Laan G, Figueroa A I 2014 Coordin. Chem. Rev. 277 95Google Scholar

    [12]

    Klewe C, Qian L, Mengmeng Y, N’Diaye A T, Burn D M, Hesjedal T, Figueroa A I, Chanyong H, Jia L, Hicken R J, Shafer P, Arenholz E, van der Laan G, Qian Z 2020 Synchrotron Radiat. News 33 12Google Scholar

    [13]

    Purbawati A, Coraux J, Vogel J, Hadj-Azzem A, Wu N J, Bendiab N, Jegouso D, Renard J, Marty L, Bouchiat V, Sulpice A, Aballe L, Foerster M, Genuzio F, Locatelli A, Mentes T O, Han Z V, Sun X D, Núñez-Regueiro M, Rougemaille N 2020 ACS Appl. Mater. Inter. 12 30702Google Scholar

    [14]

    Barinov A, Dudin P, Gregoratti L, Locatelli A, Mentes T O, Niño M A, Kiskinova M 2009 Nucl. Instrum. Meth. A 601 195Google Scholar

    [15]

    Sutton M, Mochrie S G J, Greytak T, Nagler S E, Berman L E, Held G A, et al. 1991 Nature 352 608Google Scholar

    [16]

    Bluschke M, Basak R, Barbour A, Warner A N, Fürsich K, Wilkins S, Roy S, Lee J, Christiani G, Logvenov G, Minola M, Keimer B, Mazzoli C, Benckiser E, Frano A 2022 Sci. Adv. 8 eabn6882Google Scholar

    [17]

    Shpyrko O G 2014 J. Synchrotron Radiat. 21 1057Google Scholar

    [18]

    Sandy A R, Zhang Q T, Lurio L B 2018 Annu. Rev. Mater. Res. 48 167Google Scholar

    [19]

    Zhang Q T, Dufresne E M, Sandy A R 2018 Curr. Opin. Solid St. M. 22 202Google Scholar

    [20]

    Shpyrko O G, Isaacs E D, Logan J M, Feng Y J, Aeppli G, Jaramillo R, Kim H C, Rosenbaum T F, Zschack P, Sprung M, Narayanan S, Sandy A R 2007 Nature 447 68Google Scholar

    [21]

    Grübel G, Madsen A, Robert A 2008 Soft Matter Characterization (Dordrecht: Springer) p953

    [22]

    范家东, 江怀东 2012 物理学报 61 218702Google Scholar

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar

    [23]

    Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [24]

    Rau C 2017 SRN 30 19Google Scholar

    [25]

    Tripathi A, Mohanty J, Dietze S H, Shpyrko O G, Shipton E, Fullerton E E, Kim S S, McNulty I 2011 Proc. Natl. Acad. Sci. U. S. A. 108 13393Google Scholar

    [26]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Rep. 66 867Google Scholar

    [27]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [28]

    Donnelly C, Scagnoli V 2020 J. Phys. : Condens. Matter 32 213001Google Scholar

    [29]

    Lo Y H, Zhao L, Gallagher-Jones M, Rana A, Lodico J J, Xiao W, Regan B C, Miao J 2018 Nat. Commun. 9 1826Google Scholar

  • 图 1  合肥先进光源XMCD线站配置 (a) 双波荡器光源示意图; (b) XMCD谱; (c) 双光路设计的俯视图

    Figure 1.  Configuration of the XMCD beamline at the Hefei Advanced Light Source: (a) Schematic diagram of the twin undulator sources; (b) XMCD spectrum; (c) top view of the dual beam path design.

    图 2  相干X射线散射实验设置(a)和反铁磁衍射图案的演化(b) (得到文献[16]的授权重印, 版权归©2022美国科学促进协会所有)

    Figure 2.  Coherent X-ray scattering experimental setup (a) and evolution of antiferromagnetic diffraction patterns (b) (Reproduced with permission of Ref. [16], Copyright of ©2022 The American Association for the Advancement of Science).

    图 3  相干衍射成像技术对多层Gd/Fe薄膜中的铁磁畴的成像和原位磁场调控研究 (a) X射线扫描相干X射线成像测量的示意图, 对比度主要来自X射线磁圆二色性(XMCD)效应, 在远场用X射线面探测器记录衍射图案; (b) 样品磁化强度随外加磁场变化时, 重建图像中Gd的磁构型演化(得到文献[25]的授权重印, 版权归©2011美国国家科学院所有)

    Figure 3.  Coherent diffraction imaging of ferromagnetic domains in multilayer Gd/Fe thin films and their in-situ magnetic field manipulation study: (a) Schematic diagram of X-ray scanning coherent X-ray imaging measurement, where the contrast primarily arises from the XMCD effect, and diffraction patterns are recorded in the far-field using an X-ray area detector; (b) evolution of the Gd magnetic configuration in reconstructed images as the sample magnetization changes with the applied external magnetic field (Reproduced with permission of Ref. [25], Copyright of ©2011 National Academy of Sciences).

  • [1]

    Jens Als-Nielsen, Des McMorrow 著 (封东来 译) 2015 现代X光物理原理 (上海: 复旦大学出版社)

    Als-Nielsen J, McMorrow D (translated by Feng D L) 2015 Modern Elements of X-ray Physics (Shanghai: Fudan University Press

    [2]

    麦振洪2013同步辐射光源及其应用 (上卷和下卷) (北京: 科学出版社)

    Mai Z H 2013 Synchrotron Radiation Sources and Applications (Vol. 1 and 2) (Beijing: Science Press

    [3]

    Eberhardt W 2015 J. Electron Spectrosc. 200 31Google Scholar

    [4]

    Eriksson M, van der Veen J F, Quitmann C 2014 J. Synchrotron Radiat. 21 837Google Scholar

    [5]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [6]

    Iwasawa H 2020 Electron. Struct. 2 043001Google Scholar

    [7]

    Lisi S, Lu X B, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E, Hunter A, Tamai A, Kandyba V, Giampietri A, Barinov A, Jobst J, Stalman V, Leeuwenhoek M, Watanabe K, Taniguchi T, Rademaker L, van der Molen S J, Allan M P, Efetov D K, Baumberger F 2021 Nat. Phys. 17 189Google Scholar

    [8]

    Cattelan M, Fox N A 2018 Nanomaterials-Basel 8 284Google Scholar

    [9]

    Mo S K 2017 Nano Converg. 4 6Google Scholar

    [10]

    Chen C T, Sette F, Ma Y, Modesti S 1990 Phys. Rev. B 42 7262Google Scholar

    [11]

    van der Laan G, Figueroa A I 2014 Coordin. Chem. Rev. 277 95Google Scholar

    [12]

    Klewe C, Qian L, Mengmeng Y, N’Diaye A T, Burn D M, Hesjedal T, Figueroa A I, Chanyong H, Jia L, Hicken R J, Shafer P, Arenholz E, van der Laan G, Qian Z 2020 Synchrotron Radiat. News 33 12Google Scholar

    [13]

    Purbawati A, Coraux J, Vogel J, Hadj-Azzem A, Wu N J, Bendiab N, Jegouso D, Renard J, Marty L, Bouchiat V, Sulpice A, Aballe L, Foerster M, Genuzio F, Locatelli A, Mentes T O, Han Z V, Sun X D, Núñez-Regueiro M, Rougemaille N 2020 ACS Appl. Mater. Inter. 12 30702Google Scholar

    [14]

    Barinov A, Dudin P, Gregoratti L, Locatelli A, Mentes T O, Niño M A, Kiskinova M 2009 Nucl. Instrum. Meth. A 601 195Google Scholar

    [15]

    Sutton M, Mochrie S G J, Greytak T, Nagler S E, Berman L E, Held G A, et al. 1991 Nature 352 608Google Scholar

    [16]

    Bluschke M, Basak R, Barbour A, Warner A N, Fürsich K, Wilkins S, Roy S, Lee J, Christiani G, Logvenov G, Minola M, Keimer B, Mazzoli C, Benckiser E, Frano A 2022 Sci. Adv. 8 eabn6882Google Scholar

    [17]

    Shpyrko O G 2014 J. Synchrotron Radiat. 21 1057Google Scholar

    [18]

    Sandy A R, Zhang Q T, Lurio L B 2018 Annu. Rev. Mater. Res. 48 167Google Scholar

    [19]

    Zhang Q T, Dufresne E M, Sandy A R 2018 Curr. Opin. Solid St. M. 22 202Google Scholar

    [20]

    Shpyrko O G, Isaacs E D, Logan J M, Feng Y J, Aeppli G, Jaramillo R, Kim H C, Rosenbaum T F, Zschack P, Sprung M, Narayanan S, Sandy A R 2007 Nature 447 68Google Scholar

    [21]

    Grübel G, Madsen A, Robert A 2008 Soft Matter Characterization (Dordrecht: Springer) p953

    [22]

    范家东, 江怀东 2012 物理学报 61 218702Google Scholar

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar

    [23]

    Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [24]

    Rau C 2017 SRN 30 19Google Scholar

    [25]

    Tripathi A, Mohanty J, Dietze S H, Shpyrko O G, Shipton E, Fullerton E E, Kim S S, McNulty I 2011 Proc. Natl. Acad. Sci. U. S. A. 108 13393Google Scholar

    [26]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Rep. 66 867Google Scholar

    [27]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [28]

    Donnelly C, Scagnoli V 2020 J. Phys. : Condens. Matter 32 213001Google Scholar

    [29]

    Lo Y H, Zhao L, Gallagher-Jones M, Rana A, Lodico J J, Xiao W, Regan B C, Miao J 2018 Nat. Commun. 9 1826Google Scholar

  • [1] Chen Ji-Hui, Wang Feng, Li Yu-Long, Zhang Xing, Yao Ke, Guan Zan-Yang, Liu Xiang-Ming. Tomographic incoherent holography for microscale X-ray source. Acta Physica Sinica, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [2] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [4] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [5] Gao Feng-Ju. Calculation of coherent X-ray diffraction from bent Cu nanowires. Acta Physica Sinica, 2015, 64(13): 138102. doi: 10.7498/aps.64.138102
    [6] Liu Hai-Gang, Xu Zi-Jian, Zhang Xiang-Zhi, Guo Zhi, Tai Ren-Zhong. Influence of central beamstop on ptychographic coherent diffractive imaging. Acta Physica Sinica, 2013, 62(15): 150702. doi: 10.7498/aps.62.150702
    [7] Zhou Guang-Zhao, Wang Yu-Dan, Ren Yu-Qi, Chen Can, Ye Lin-Lin, Xiao Ti-Qiao. Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging. Acta Physica Sinica, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [8] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [9] Cheng Guan-Xiao, Hu Chao. X-ray Zernike apodized photon sieves for phase-contrast microscopy. Acta Physica Sinica, 2011, 60(8): 080703. doi: 10.7498/aps.60.080703
    [10] Zhou Guang-Zhao, Tong Ya-Jun, Chen Can, Ren Yu-Qi, Wang Yu-Dan, Xiao Ti-Qiao. Digital simulation for coherent X-ray diffractive imaging. Acta Physica Sinica, 2011, 60(2): 028701. doi: 10.7498/aps.60.028701
    [11] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xeq+ on Mo surface. Acta Physica Sinica, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [12] Zhang Xiang-Zhi, Xu Zi-Jian, Zhen Xiang-Jun, Wang Yong, Guo Zhi, Yan Rui, Chang Rui, Zhou Ran-Ran, Tai Ren-Zhong. Soft X-ray spectromicroscopy dual-energy contrast image for element spatial distribution analysis. Acta Physica Sinica, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [13] Tang Zheng, Li Chang-Zhen, Yin Di, Zhu Ben-Peng, Wang Li-Li, Wang Jun-Feng, Xiong Rui, Wang Qu-Quan, Shi Jing. Single crystal growth and magnetic properties of strong geometric frustrated magnetic pyrochlore Dy2Ti2O7. Acta Physica Sinica, 2006, 55(12): 6532-6537. doi: 10.7498/aps.55.6532
    [14] Zhao Yong-Tao, Xiao Guo-Qing, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Li Fu-Li, Zhang Yan-Ping, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The x-ray spectra of hollow atoms. Acta Physica Sinica, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [15] Yang Jia-Min, Ding Yao-Nan, Zheng Zhi-Jian, Wang Yao-Mei, Zhang Wen-Hai, Zhang Ji-Yan, Liu Jin-Yuan, San Bing, Gao Sheng-Chen, Ren You-Lai, Liu Xiu-Qin. Diagnostic technology of time-and space-resolved soft-x-ray spectra. Acta Physica Sinica, 2003, 52(6): 1427-1431. doi: 10.7498/aps.52.1427
    [16] Tao Xiang-Ming, Xu Xian-Jun, Tan Ming-Qiu. . Acta Physica Sinica, 2002, 51(11): 2602-2605. doi: 10.7498/aps.51.2602
    [17] Sun Ke-xu, Jiang Shao-en, Huang Tian-xuan, Yi Rong- qing, Cui Yan-li, Wang Hong-bin, Chen Jiu-sen, Yu Rui-zhen, Ding Yao-nan, Ding Yong-kun, Tang Dao-yuan, Wen Shu-huai. Measurment of Soft X-ray Spectrum by Filter Difference Method. Acta Physica Sinica, 2000, 49(1): 98-101. doi: 10.7498/aps.49.98
    [18] ZHU SHI-YAO, XU JI-HUA, ZHAO SHU-JUN, LI XING. INVESTIGATION OF THE FINE STRUCTURE OF BORON'S Kα X-RAY SPECTRUM. Acta Physica Sinica, 1991, 40(9): 1411-1416. doi: 10.7498/aps.40.1411
    [19] ZHANG HUI-HUANG, LIN ZUN-QI, HE XING-FA, ZHANG ZHENG-QUAN, WANG XIAO-QIN, LU QI-RONG, GU ZHONG-MIN, ZHUANG YU-FEI, CUI JI-XIU, YU WEN-YAN, LI JIA-MING, GONG MEI-XIA, ZHANG XIAO-QIU, LEI ZHI-YUAN, YANG BIN-ZHOU, ZHAO WEI. FEATURES OF ELECTRON DENSITY AND TIME-RESOLVED X-RAY SPECTRA FROM LATERAL JET NOZZLE OF Mg MICROTUBE TARGET. Acta Physica Sinica, 1989, 38(11): 1838-1844. doi: 10.7498/aps.38.1838
    [20] GUO CHANG-LIN, JI ANG, TAO GUANG-YI. QUANTITATIVE DETERMINATION OF INTENSITY DISTRIBUTION OF PRIMARY X-RAY SPECTRUM. Acta Physica Sinica, 1981, 30(10): 1351-1360. doi: 10.7498/aps.30.1351
Metrics
  • Abstract views:  1506
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2024
  • Accepted Date:  13 August 2024
  • Available Online:  23 August 2024
  • Published Online:  05 October 2024

/

返回文章
返回