Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tailoring group delay dispersion of surface plasmon polaritons propagating on thin gold film by chirped femtosecond laser pulses

Song Han-Bing Lang Peng Ji Bo-Yu Xu Yang Song Xiao-Wei Lin Jing-Quan

Citation:

Tailoring group delay dispersion of surface plasmon polaritons propagating on thin gold film by chirped femtosecond laser pulses

Song Han-Bing, Lang Peng, Ji Bo-Yu, Xu Yang, Song Xiao-Wei, Lin Jing-Quan
PDF
HTML
Get Citation
  • Understanding the propagation characteristics of surface plasmon polaritons (SPPs) is of great significance in designing and constructing on-chip integrated systems utilizing plasmonic effect. Accurately characterizing and flexibly controlling SPP on thin metal film are indispensable. Here, we theoretically derive the group velocity dispersion of SPP propagation on the surface of Au films with various thicknesses. The results obtained in this work indicate that when the thickness of the Au film is less than 40 nm, group velocity dispersion of SPP decreases significantly as the film thickness increases. The decrease of group velocity dispersion becomes mild with the thickness increasing from 40 nm to 60 nm, then the dispersion keeps a very low constant value for the film thicker than 60 nm. Using the finite-difference time-domain method, temporal evolution of localized electric field of SPP is numerically simulated for various propagation distances. By comparing the field amplitudes and the dispersions of SPP which are excited by incident light pulses with different dispersions, group velocity dispersions of SPP on the Au films are obtained, showing a good consistence with the theoretical results. Moreover, we demonstrate that by utilizing the tailored SPP to excite metal nanoantenna, selective excitations at different frequencies on a femtosecond temporal scale can be achieved through localized surface plasmonic resonant effect. Manipulating the sign and amount of the dispersion from the incident pulse, the active control of the switching sequence and switching time of electric field between the Au cylinders can be achieved. Manipulating the propagation distance of SPP, the active control of the switching time of electric field between the Au cylinders can be achieved. Therefore, those results provide a promising avenue for realizing functions such as signal propagation, reception, adjustment, and encoding in on-chip interconnect circuit systems based on SPP. This work shows that the dispersion can be used as degree of freedom for controlling the amplitude, phase and pulse width of SPP propagating on thin film, and it is of great importance in designing and controlling on-chip integrated systems through utilizing plasmonic effect, such as ultrafast frequency demodulators and nanoantennas in on-chip interconnect optical circuits.
      Corresponding author: Lin Jing-Quan, linjingquan@cust.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1604304, 2022YFA1604303), the National Natural Science Foundation of China (Grant Nos. 12374341, 62005022, 12004052), the Department of Science and Technology of the Jilin Province, China (Grant No. 20230508143RC), the “111” Project of China (Grant No. D17017), the Natural Science Foundation of Chongqing, China (Grant Nos. CSTB2023NSCQ-MSX1026, CSTB2023NSCQ-MSX0302, CSTB2023NSCQ-MSX0708), and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (Grant No. GZC20232234).
    [1]

    Komatsu K, Pápa Z 2024 Nano Lett. 24 2637Google Scholar

    [2]

    Sandtke M 2007 Ph. D. Dissertation (Enschede: University of Twente

    [3]

    Zayats A V, Smolyaninov I I 2003 J. Opt. A: Pure Appl. Opt. 5 S16Google Scholar

    [4]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (Vol. 1) (New York: Springer) pp39–50

    [5]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [6]

    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2007 Rep. Prog. Phys. 70 1Google Scholar

    [7]

    Song H B, Lang P S, Ji B Y, Xu Y, Peng S Y, Song X W, Lin J Q 2024 J. Phys. Chem. Lett. 15 7924Google Scholar

    [8]

    Goerlitzer E S A, Mohammadi R, Nechayev S, Volk K, Rey M, Banzer P, Karg M, Vogel N 2020 Adv. Mater. 32 2001330Google Scholar

    [9]

    Joly A G, Gong Y, El-Khoury P Z, Hess W P 2018 J. Phys. Chem. Lett. 9 6164Google Scholar

    [10]

    Sumimura A, Ota M 2016 IEEE Photonics Technol. Lett. 28 2419Google Scholar

    [11]

    Razinskas G, Kilbane D, Melchior P, Geisler P, Krauss E, Mathias S, Hecht B, Aeschlimann M 2016 Nano Lett. 16 6832Google Scholar

    [12]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [13]

    Jin J J, Li X, Guo Y H, Pu M B, Gao P, Ma X L, Luo X G 2019 Nanoscale 11 3952Google Scholar

    [14]

    Pors A, Nielsen M G, Bernardin T, Weeber J C, Bozhevolnyi S I 2014 Light Sci. Appl. 3 e197Google Scholar

    [15]

    Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331Google Scholar

    [16]

    Rockstuhl C, Herzig H P 2004 Opt. Lett. 29 2181Google Scholar

    [17]

    Bernatová S, Donato M G, Ježek J, Pilát Z, SamekO, Magazzù A, Maragò O M, Zemánek P, Gucciardi P G 2019 J. Phys. Chem. C 123 5608

    [18]

    Yao W J, Liu S, Liao H M, Li Z, Sun C W, Chen J J, Gong Q H 2015 Nano Lett. 15 3115Google Scholar

    [19]

    Qin Y L, Song X W, Ji B Y, Xu Y, Lin J Q 2019 Opt. Lett. 44 2935Google Scholar

    [20]

    Buckanie N M, Kirschbaum P, Sindermann S, Meyer zu Heringdorf F J 2013 Ultramicroscopy 130 49Google Scholar

    [21]

    Weeber J C, Lacroute Y, Dereux A, Devaux E, Ebbesen T, Girard C, González M U, Baudrion A L 2004 Phys. Rev. B 70 235406Google Scholar

    [22]

    Leißner T, Lemke C, Jauernik, S, Müller M, Fiutowski J, Tavares L, Thilsing-Hansen K, Kjelstrup-Hansen J, Magnussen O, Rubahn H G, Bauer M 2013 Opt. Express 21 8251Google Scholar

    [23]

    Lepetit L, Chériaux G 1995 J. Opt. Soc. Am. B 12 2467Google Scholar

    [24]

    Iaconis C, Walmsley I A 1998 Opt. Lett. 23 792Google Scholar

    [25]

    Yi J M, Hou D 2017 ACS Photonics 4 347Google Scholar

    [26]

    虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar

    Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar

    [27]

    张文君, 高龙, 魏红, 徐红星 2019 物理学报 68 147302Google Scholar

    Zhang W J, Gao L, Wei H, Xu H X 2019 Acta Phys. Sin. 68 147302Google Scholar

    [28]

    Kiani F, Tagliabue G 2022 Chem. Mater. 34 1278Google Scholar

    [29]

    Qin H L, Wang D, Huang Z L, Wu D M, Zeng Z C, Ren B, Xu K, Jin J 2013 J. Am. Chem. Soc. 135 12544Google Scholar

    [30]

    Maniyara R A, Rodrigo D, Yu R W, Canet-Ferrer J, Ghosh D S, Yongsunthon R, Baker D E, Rezikyan A, de Abajo F J G, Pruneri V 2019 Nat. Photonics 13 328Google Scholar

    [31]

    Zhang Z 2011 Femtosecond Laser Technology (Vol. 1) (Beijing: China Science Publishing & Media LTD) pp6–12

    [32]

    Burke J J, Stegeman G I, Tamir T 1986 Phys. Rev. B 33 5186Google Scholar

    [33]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

  • 图 1  (a) SPP波矢的实部与频率的多项式拟合; (b)不同频率下SPP在10 nm金膜表面传播的群速度色散

    Figure 1.  (a) Polynomial fitting of the real part of SPP wave vector versus frequency; (b) group velocity dispersion of SPP propagating on the surface of 10 nm gold film at different frequencies.

    图 2  (a)模拟设置示意图, W = 350 nm, H = 10 nm; 在色散量分别为0 (黑色)、–10 (红色)、–20 (蓝色)与–40 fs2 (绿色)的飞秒激光脉冲激发下, 传输距离分别为1 μm (b), 2 μm (c), 3 μm (d), 6 μm (e)的SPP电场演化曲线

    Figure 2.  (a) Schematic diagram of the simulation setup, W = 350 nm, H = 10 nm; temporal evolution of electric field of SPP with the propagation distances of 1 μm (b), 2 μm (c), 3 μm (d), 6 μm (e) under the excitation of femtosecond laser pulse with the negative dispersion of 0 (black), –10 (red), -20 (blue), –40 fs2 (green), respectively.

    图 3  (a) SPP在厚度分别为20, 30和40 nm的金膜上传播的波矢与频率的多项式拟合; (b)不同频率下SPP在20, 30和40 nm金膜表面传播的群速度色散

    Figure 3.  Dispersion relationship of GVD for SPP propagating on Au film with the thicknesses of 20, 30, and 40 nm; (b) group velocity dispersion of SPP propagating on the surface of 20, 30, and 40 nm gold film at different frequencies.

    图 4  (a)中心频率为375 THz (800 nm)时$ {k}_{{\mathrm{s}}{\mathrm{p}}{\mathrm{p}}} $的实部随金膜厚度的变化; (b)中心波长为800 nm的入射光激发的SPP, 在不同厚度的金膜表面传播产生的GVD(黑色为理论拟合结果, 红色为FDTD模拟结果)

    Figure 4.  (a) Real part of $ {k}_{{\mathrm{s}}{\mathrm{p}}{\mathrm{p}}} $ versus the thickness of Au film at 375 THz (800 nm); (b) GVD versus the thickness of Au film obtained from theoretical calculation (black) and simulation calculation (red).

    图 5  (a) SPP激发下的金圆柱结构示意图; (b)两个纳米圆柱结构热点位置的近场谱; (c) 315.8 THz频率激发下金纳米圆柱结构的近场分布图; (d) 370.8 THz频率激发下金纳米圆柱结构的近场分布图

    Figure 5.  (a) Schematic diagram of Au cylinders with the excitation of SPP; (b) near-field spectrum at the hot spots of two Au nano-cylinders; field profiles of the two Au nano-cylinders at 315.8 THz (c) and 370.8 THz (d) of excitation frequency.

    图 6  色散量分别为0 fs2 (a), 40 fs2 (b), 80 fs2 (c)与 –80 fs2 (d)的激光脉冲激发下A1 与 A2 纳米圆柱结构热点处的电场演化曲线

    Figure 6.  Temporal evolution of electric field at the hotspot from A1 and A2 nano-cylinders excited by 0 fs2 (a), 40 fs2 (b), 80 fs2 (c) and –80 fs2 (d) laser pulse.

    图 7  色散量为40 fs2的脉冲激发下, 传播距离距凹槽边缘2 μm (a)与12 μm (b)时, A1 与 A2 纳米圆柱结构热点处的电场演化曲线; (c)色散量为0 fs2的脉冲激发下, 传播距离距凹槽边缘12 μm时, A1 与 A2 纳米圆柱结构热点处的电场演化曲线

    Figure 7.  Temporal evolution of electric field at the hotspot from A1 and A2 nano-cylinders when the propagation distance is 2 μm (a) and 12 μm (b) from the edge of the groove under the excitation of the incident laser pulse with a dispersion of 40 fs2; (c) temporal evolution of electric field at the hotspot from A1 and A2 nano-cylinders when the propagation distance is 12 μm from the edge of the groove under the excitation of the incident laser pulse with a dispersion of 0 fs2.

    图 A1  (a)金膜厚度分别为10, 20, 30与40 nm时相同变换极限脉冲激发的SPP传播3 μm的电场演化曲线. 当金膜厚度为20 nm (b), 30 nm (c)与40 nm (d)时, –10 fs2飞秒激光脉冲激发的SPP在传播3 μm后电场强度与0 fs2飞秒激光脉冲激发的SPP传播3 μm后的电场演化曲线对比

    Figure A1.  (a) Electric field evolution curves for SPP propagation 3 μm excited by the same propagation limit pulse for Au film thicknesses of 10, 20, 30 and 40 nm. Comparison of the electric field strength of SPP excited by a –10 fs2 femtosecond laser pulse after propagation of 3 μm with the electric field evolution curves of SPP excited by a 0 fs2 femtosecond laser pulse after propagation of 3 μm when the Au film thickness is 20 nm (b), 30 nm (c) and 40 nm (d).

    表 1  入射激光脉冲的色散量与 SPP 的传播长度

    Table 1.  Dispersion of the incident laser pulse and propagation lengths of SPP.

    入射激光脉冲的色散量/fs2 传播长度/μm
    –10 0.6
    –20 1.3
    –30 2.0
    –40 2.7
    –60 4.1
    DownLoad: CSV
  • [1]

    Komatsu K, Pápa Z 2024 Nano Lett. 24 2637Google Scholar

    [2]

    Sandtke M 2007 Ph. D. Dissertation (Enschede: University of Twente

    [3]

    Zayats A V, Smolyaninov I I 2003 J. Opt. A: Pure Appl. Opt. 5 S16Google Scholar

    [4]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (Vol. 1) (New York: Springer) pp39–50

    [5]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [6]

    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2007 Rep. Prog. Phys. 70 1Google Scholar

    [7]

    Song H B, Lang P S, Ji B Y, Xu Y, Peng S Y, Song X W, Lin J Q 2024 J. Phys. Chem. Lett. 15 7924Google Scholar

    [8]

    Goerlitzer E S A, Mohammadi R, Nechayev S, Volk K, Rey M, Banzer P, Karg M, Vogel N 2020 Adv. Mater. 32 2001330Google Scholar

    [9]

    Joly A G, Gong Y, El-Khoury P Z, Hess W P 2018 J. Phys. Chem. Lett. 9 6164Google Scholar

    [10]

    Sumimura A, Ota M 2016 IEEE Photonics Technol. Lett. 28 2419Google Scholar

    [11]

    Razinskas G, Kilbane D, Melchior P, Geisler P, Krauss E, Mathias S, Hecht B, Aeschlimann M 2016 Nano Lett. 16 6832Google Scholar

    [12]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [13]

    Jin J J, Li X, Guo Y H, Pu M B, Gao P, Ma X L, Luo X G 2019 Nanoscale 11 3952Google Scholar

    [14]

    Pors A, Nielsen M G, Bernardin T, Weeber J C, Bozhevolnyi S I 2014 Light Sci. Appl. 3 e197Google Scholar

    [15]

    Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331Google Scholar

    [16]

    Rockstuhl C, Herzig H P 2004 Opt. Lett. 29 2181Google Scholar

    [17]

    Bernatová S, Donato M G, Ježek J, Pilát Z, SamekO, Magazzù A, Maragò O M, Zemánek P, Gucciardi P G 2019 J. Phys. Chem. C 123 5608

    [18]

    Yao W J, Liu S, Liao H M, Li Z, Sun C W, Chen J J, Gong Q H 2015 Nano Lett. 15 3115Google Scholar

    [19]

    Qin Y L, Song X W, Ji B Y, Xu Y, Lin J Q 2019 Opt. Lett. 44 2935Google Scholar

    [20]

    Buckanie N M, Kirschbaum P, Sindermann S, Meyer zu Heringdorf F J 2013 Ultramicroscopy 130 49Google Scholar

    [21]

    Weeber J C, Lacroute Y, Dereux A, Devaux E, Ebbesen T, Girard C, González M U, Baudrion A L 2004 Phys. Rev. B 70 235406Google Scholar

    [22]

    Leißner T, Lemke C, Jauernik, S, Müller M, Fiutowski J, Tavares L, Thilsing-Hansen K, Kjelstrup-Hansen J, Magnussen O, Rubahn H G, Bauer M 2013 Opt. Express 21 8251Google Scholar

    [23]

    Lepetit L, Chériaux G 1995 J. Opt. Soc. Am. B 12 2467Google Scholar

    [24]

    Iaconis C, Walmsley I A 1998 Opt. Lett. 23 792Google Scholar

    [25]

    Yi J M, Hou D 2017 ACS Photonics 4 347Google Scholar

    [26]

    虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar

    Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar

    [27]

    张文君, 高龙, 魏红, 徐红星 2019 物理学报 68 147302Google Scholar

    Zhang W J, Gao L, Wei H, Xu H X 2019 Acta Phys. Sin. 68 147302Google Scholar

    [28]

    Kiani F, Tagliabue G 2022 Chem. Mater. 34 1278Google Scholar

    [29]

    Qin H L, Wang D, Huang Z L, Wu D M, Zeng Z C, Ren B, Xu K, Jin J 2013 J. Am. Chem. Soc. 135 12544Google Scholar

    [30]

    Maniyara R A, Rodrigo D, Yu R W, Canet-Ferrer J, Ghosh D S, Yongsunthon R, Baker D E, Rezikyan A, de Abajo F J G, Pruneri V 2019 Nat. Photonics 13 328Google Scholar

    [31]

    Zhang Z 2011 Femtosecond Laser Technology (Vol. 1) (Beijing: China Science Publishing & Media LTD) pp6–12

    [32]

    Burke J J, Stegeman G I, Tamir T 1986 Phys. Rev. B 33 5186Google Scholar

    [33]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

  • [1] Zhang Yun, Lin Shuang, Zhang Yun-Feng, Zhang He, Chang Ming-Ying, Yu Miao, Wang Ya-Qiu, Cai Xiao-Ming, Jiang Yuan-Fei, Chen An-Min, Li Su-Yu, Jin Ming-Xing. Spatial distribution of nitrogen fluorescence emission induced by femtosecond laser filamentation in air. Acta Physica Sinica, 2021, 70(13): 134206. doi: 10.7498/aps.70.20201704
    [2] Li He, Chen An-Min, Yu Dan, Li Su-Yu, Jin Ming-Xing. Influence of temperature on supercontinuum generation induced by femtosecond laser filamentation in NaCl solution. Acta Physica Sinica, 2018, 67(18): 184206. doi: 10.7498/aps.67.20180686
    [3] Zhang Wei, Teng Hao, Shen Zhong-Wei, He Peng, Wang Zhao-Hua, Wei Zhi-Yi. A 18 mJ femtosecond Ti: sapphire amplifier at 100 Hz repetition rate. Acta Physica Sinica, 2016, 65(22): 224204. doi: 10.7498/aps.65.224204
    [4] Liu Gui-Yuan, Song Hong-Sheng, Zhang Ning-Yu, Cheng Chuan-Fu. Phase singularities in femtosecond laser pulses transmitting through optical fiber probes. Acta Physica Sinica, 2015, 64(2): 024203. doi: 10.7498/aps.64.024203
    [5] Han Xiao-Chun, Huang Jing-Zheng, Fang Chen, Zeng Gui-Hua. Research of the impact of group velocity dispersion on the second-order correlation of entangled light field. Acta Physica Sinica, 2015, 64(7): 070301. doi: 10.7498/aps.64.070301
    [6] Zhao Guan-Kai, Liu Jun, Li Ru-Xin. Spectral phase measurement and compensation of femtosecond laser pulse based on multi-photon intra-pulse interference phase scan. Acta Physica Sinica, 2014, 63(16): 164207. doi: 10.7498/aps.63.164207
    [7] Zhang Su-Xia, Li Fang-Jia, Liu Jun. Reduction of the angular dispersion in self-diffraction signals by using a prism. Acta Physica Sinica, 2014, 63(5): 054203. doi: 10.7498/aps.63.054203
    [8] Wang Yan-Zhi, Shao Jian-Da, Yi Kui, Qi Hong-Ji, Wang Ding, Leng Yu-Xin. Design and fabrication of broadband chirped mirror pair. Acta Physica Sinica, 2013, 62(20): 204207. doi: 10.7498/aps.62.204207
    [9] Wang Yan-Zhi, Shao Jian-Da, Dong Hong-Cheng, Jin Yun-Xia, He Hong-Bo, Yi Kui, Fan Zheng-Xiu, Song You-Jian, Wang Si-Jia, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Design and manufacture of high dispersion mirror. Acta Physica Sinica, 2011, 60(11): 117801. doi: 10.7498/aps.60.117801
    [10] Chai Lu, Fan Zheng-Xiu, Wang Qing-Yue, Wang Yan-Zhi, Dong Hong-Cheng, Song You-Jian, Hu Ming-Lie, Shao Jian-Da, Jin Yun-Xia, He Hong-Bo, Yi Kui. Generation of 9.5 fs pulse by use of chirped mirrorsin Ti:sapphire laser cavity. Acta Physica Sinica, 2011, 60(1): 018101. doi: 10.7498/aps.60.018101
    [11] Shen Hong-Jun, Tian Hui-Ping, Ji Yue-Feng. A novel photonic crystal slab waveguide with dispersionless slow light. Acta Physica Sinica, 2010, 59(4): 2820-2826. doi: 10.7498/aps.59.2820
    [12] Chen Yong-Zhu, Li Yu-Zhong, Xu Wen-Cheng. Research on flat ultra-wideband supercontinuum generated in dispersion-flattened decreasing fiber. Acta Physica Sinica, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [13] Deng Li, Sun Zhen-Rong, Lin Wei-Zhu, Wen Jin-Hui. The stimulated Raman scattering and the four wave mixing in the generation of sub-10 fs pulses. Acta Physica Sinica, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [14] Zheng Zhi-Yuan, Li Yu-Tong, Yuan Xiao-Hui, Xu Miao-Hua, Liang Wen-Xi, Yu Quan-Zhi, Zhang Yi, Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Effects of target thickness on emission direction of hot electrons generated from subrelativistic intensity laser pulses interacting with foil targets. Acta Physica Sinica, 2006, 55(4): 1894-1899. doi: 10.7498/aps.55.1894
    [15] Chen Yong-Zhu, Li Yu-Zhong, Qu Gui, Xu Wen-Cheng. Numerical research of flat wideband supercontinuum generation in anomalous dispersion-flattened fibers. Acta Physica Sinica, 2006, 55(2): 717-722. doi: 10.7498/aps.55.717
    [16] He Feng, Yu Wei, Xu Han, Lu Pei-Xiang. Acceleration of a pre-accelerated electron by an ultra-short and ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [17] Deng Yun-Pei, Jia Tian-Qing, Leng Yu-Xin, Lu Hai-He, Li Ru-Xin, Xu Zhi-Zhan. Experimental and theoretical study on the ablation of fused silica by femtosecond lasers. Acta Physica Sinica, 2004, 53(7): 2216-2220. doi: 10.7498/aps.53.2216
    [18] Duan Zuo-Liang, Chen Jian-Ping, Fang Zong-Bao, Wang Xing-Tao, Li Ru-Xin, Lin Li-Huang, Xu Zhi-Zhan. Evolvement of filamentation of femtosecond laser pulses of a kHz repetition rate propagating in Air. Acta Physica Sinica, 2004, 53(2): 473-477. doi: 10.7498/aps.53.473
    [19] Wang Huai-Sheng, Sun Da-Rui, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue. The Bragg reflection characteristics of the fibre grating formed by chirped ultr ashort laser pulses. Acta Physica Sinica, 2003, 52(9): 2185-2189. doi: 10.7498/aps.52.2185
    [20] Deng Li, Liao Rui, Liu Ye-Xin, Shou Qian, Wen Jin-Hui, Lin Wei-Zhu. Diagnostics and compression of sub-10 femtosecond laser pulses. Acta Physica Sinica, 2003, 52(8): 1938-1942. doi: 10.7498/aps.52.1938
Metrics
  • Abstract views:  1072
  • PDF Downloads:  28
  • Cited By: 0
Publishing process
  • Received Date:  12 July 2024
  • Accepted Date:  12 August 2024
  • Available Online:  19 August 2024
  • Published Online:  05 September 2024

/

返回文章
返回