Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser trapping and manipulation of micro/nano-objects on polymer substrates

YIN Yue DOU Lin SHEN Tian-Ci LIU Jia-Tong GU Fu-Xing

Citation:

Laser trapping and manipulation of micro/nano-objects on polymer substrates

YIN Yue, DOU Lin, SHEN Tian-Ci, LIU Jia-Tong, GU Fu-Xing
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Polymer substrates overcome the limitations of rigid planar substrates in spatial deformation scenarios and can be combined with photolithography to fabricate complex, three-dimensional irregular polymer structures. Photothermal-shock tweezer is a laser trapping technique based on the photothermal shock effect. Photothermal-shock tweezer leverages pulsed laser induced transient photothermal shock to generate micro-newton-scale thermomechanical strain gradients force, enabling the capture and manipulation of micro/nano-objects at solid interfaces. Integrating this technique with polymer substrates can address the demands of new application scenarios.In this work, we use commonly employed polymethyl methacrylate (PMMA) and negative photoresist (SU-8) as polymer substrates, on which SiO2 nanofilms are fabricated using the sol-gel method. This approach effectively mitigates thermal damage caused by photothermal shock effects, enabling laser trapping and manipulation of micro/nano-objects.
    SiO2 nanofilms, characterized by low thermal conductivity, effectively inhibit heat transfer. The nanofilm fabrication technique utilized in this study enables the synthesis of large-area SiO2 nanofilms with large-area coverage, low surface roughness (Rq ~ 320 pm) and uniform thickness, making it broadly applicable to flexible polymer substrates and irregular structures. Direct contact between the polymer layer and micro/nano-objects during photothermal shock tweezers manipulation can induce irreversible substrate degradation due to transient photothermal shock effects. Experimental results demonstrate that depositing an SiO2 nanofilm thicker than 110 nm on the polymer substrate significantly enhances thermal insulation and protection, effectively mitigating laser-induced damage under typical optical manipulation conditions.
    Additionally, by analyzing the temperature field distribution of the gold nanosheet, PMMA substrate, and SiO2 nanofilm during a single photothermal shock trapping of a gold nanosheet, we found that the SiO2 nanofilm can reduce the PMMA surface temperature by at least 111 ºC and delay the time for PMMA to reach its peak temperature by 13.2 ns compared to the peak temperature time of the gold nanosheet. The experimental results expand the environmental media for laser trapping of objects, offering new possibilities for applications in micro/nano-manipulation, micro/nanorobotics, and micro/nano-optoelectronic devices.
  • [1]

    Li N, Zhu X M, Li W Q, Fu Z H, Hu M Z, Hu H Z 2019 Front. Inform. Technol.Electron. Eng. 20 655

    [2]

    Wang H C, Li Z P 2019 Acta Phys. Sin. 68 25 (in Chinese) [汪涵聪,李志鹏 2019物理学报 68 25]

    [3]

    Han X, Chen X L, Xiong W, Kuang T F, Chen Z H, Peng M, Xiao G Z, Yang K Y, Luo H 2021 Chinese Journal of Lasers 48 187 (in Chinese) [韩翔, 陈鑫麟, 熊威, 邝腾芳, 陈志洁, 彭妙, 肖光宗, 杨开勇, 罗晖 2021中国激光 48 187]

    [4]

    Gieseler J, Gomez-Solano J R, Magazzù A, Pérez Castillo I, Pérez García L, Gironella-Torrent M, Viader-Godoy X, Ritort F, Pesce G, Arzola A V, Volke-Sepúlveda K, Volpe G 2021 Adv. Opt. Photonics. 13 74

    [5]

    Yu S L, Lu J S, Ginis V, Kheifets S, Lim S W D, Qiu M, Gu T, Hu J J, Capasso F 2021 Optica 8 409

    [6]

    Xu X H, Gao W Y, Li T Y, Shao T H, Li X Y, Zhou Y, Gao G Z, Wang G X, Yan S H, Wang S M, Yao B L 2024 Acta Optica Sinica 44 9 (in Chinese)[徐孝浩, 高文禹, 李添悦, 邵天骅, 李星仪, 周源, 高歌泽, 王国玺, 严绍辉, 王漱明, 姚保利 2024 光学学报 44 9]

    [7]

    Yang J H, Deng R P, Wang X Y, Zhang Y Q, Yuan X C, Min C J 2024 Chinese Journal of Lasers 51 62 (in Chinese) [杨嘉豪, 邓如平, 汪先友, 张聿全, 袁小聪, 闵长俊 2024 中国激光51 62]

    [8]

    Jia Q, Lyu W, Yan W, Tang W, Lu J, Qiu M 2023 Photonics Insights 2 R05-1

    [9]

    Liu H J, Liu Y F, Gu F X 2024 Acta Phys. Sin. 73 199 (in Chinese) [刘鸿江, 刘逸飞, 谷付星 2024 物理学报 73 199]

    [10]

    Gu Z Q, Zhu R L, Shen T C, Dou L, Liu H J, Liu Y F, Liu X, Liu J, Zhuang S L, Gu F X 2023 Nat. Commun. 14 7663

    [11]

    Zhang Y Z, Liu H J, Zhu R L, Liu Y F, Gu F X 2024 Chinese Journal of Lasers 51 219 (in Chinese) [张尹峥, 刘鸿江, 朱润琳,刘逸飞,谷付星 2024中国激光 51 219]

    [12]

    Shi Z X, Shen T C, Dou L, Gu Z Q, Zhu R L, Dong X Y, Gu F X 2024 Laser. Photonics. Rev. 18 2400384

    [13]

    Zhu R L, Shen T C, Gu Z Q, Shi Z X, Dou L, Liu Y F, Zhuang S L, Gu F X 2024 ACS. Nano 18 23232

    [14]

    Gu Z Q, Dou L, Linghu S Y, Zhu R L, Gu F X 2024 Phys. Rev. Appl. 22 054066

    [15]

    Song J K, Kim M S, Yoo S, Koo J H, Kim D H 2021 Nano. Res. 14 2919

    [16]

    Tan W S, Zhou J Z, Huang S, Sheng J, Xu J L 2016 Infrared and Laser Engineering

    [17]

    45 67 (in Chinese) [谭文胜, 周建忠, 黄舒, 盛杰, 徐家乐 2016 红外与激光工程 45 67]

    [18]

    Tang F, Pan D, Yu F, Huang K J, Hu Y L, Wu D, Li J W 2024 Chinese Journal of Lasers 51 170 (in Chinese) [唐枫, 潘登, 俞飞, 黄锟境, 胡衍雷, 吴东, 李家文 2024 中国激光 51 170]

    [19]

    Bian P, Hu Z Y, An R, Tian Z N, Liu X Q, Chen Q D 2024 Laser. Photonics. Rev. 18 2300957

    [20]

    Wang Y X, Liao C R, Zou M Q, Bao W J, Liu D J, Zhang L, Wang Y P 2024 Chinese Journal of Lasers 51 317 (in Chinese) [王裕鑫, 廖常锐, 邹梦强, 包维佳, 刘德军, 张立, 王义平 2024 中国激光 51 317]

    [21]

    Lee J, Kim J, Lee B J, Lee J, Lee H W, Hong M H, Park H H, Shim D Il, Cho H H, Kwon K H 2018 Thin Solid Films 660 715

    [22]

    Tang T T, Wang Z H 2010 The Science of Micro- and Nano-fabrication (Beijing: Publishing House of Electronics Industry) p312 (in Chinese) [唐天同,王兆宏 2010微纳加工科学原理(北京: 电子工业出版社) 第312页]

    [23]

    Xing A, Gao Y, Yin J G, Ren G J, Liu H T, Ma M J 2010 Appl. Surf. Sci. 256 6133

    [24]

    Kim S H, Hwang G S, Koo D, Seo D H, Kwon Y P, Lee H, Park H, Jeon E C, Kim J Y 2022 Nano. Res. 15 7476

    [25]

    Li T, KINGSLEY-SMITH J J, Hu Y, Xu X, Yan S, Wang S, Yao B, Wang Z, Zhu S 2023 Opt. Lett. 48 255

    [26]

    Li T, Xu H, Panmai M, Shao T, Gao G, Xu F, Hu G, Wang S, Wang Z, Zhu S 2024 Ultrafast Sci. 4 0074

    [27]

    Li T, Liu M, Hou J, Yang X, Wang S, Wang S, Zhu S, Tsai D P, Wang Z 2024 Chip 3 100109

    [28]

    Guo J K, Sandaruwan W D N, Li J W, Ling J Z, Yuan Y, Liu X, Li Q, Wang X R 2024 Micromachines 15 337

    [29]

    Liang Z S, Zhang B L, Yi S H, Sun K Y, Pei G H, Shang Y, Liu X Y, Ren S X, Liu P F, Zhao J J 2024 Nano Mater. Sci. org/10.1016/ j.nanoms. 2024.05.013

    [30]

    Cheng Q L, Lu X Q, Tai Y H, Luo T T, Yang R H 2024 ACS Biomater. Sci. Eng. 10 5562

    [31]

    Hou J Y, Liu H T, Huang L T, Wu S B, Zhang Z L 2024 Chem. Eng. J. 498 155135

  • [1] Zhang Xian-Jun. Development and application of cryogenic optical microscopy in photosynthesis research. Acta Physica Sinica, doi: 10.7498/aps.73.20241072
    [2] Liu Xian-Zhe, Zhang Xu, Tao Hong, Huang Jian-Lang, Huang Jiang-Xia, Chen Yi-Tao, Yuan Wei-Jian, Yao Ri-Hui, Ning Hong-Long, Peng Jun-Biao. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method. Acta Physica Sinica, doi: 10.7498/aps.69.20200653
    [3] Liang Wan-Ting, Hou Zhi-Yun, Zhou Gui-Yao, Xia Chang-Ming, Zhang Wei, Wei Le-Feng, Liu Jian-Tao. Investigation on Yb3+-doped silica glass using sol-gel method and laser melting technology. Acta Physica Sinica, doi: 10.7498/aps.65.178107
    [4] Zhou Pan-Fan, Yuan Huan, Xu Xiao-Nan, Lu Yi-Hong, Xu Ming. Effects of doping F and transition metal on crystal structure and properties of ZnO thin film. Acta Physica Sinica, doi: 10.7498/aps.64.247503
    [5] Yang Hong, Qi Wei-Hua, Ji Deng-Hui, Shang Zhi-Feng, Zhang Xiao-Yun, Xu Jing, Lang Li-Li, Tang Gui-De. Structure and magnetic properties of perovskite manganites La2/3Sr1/3FexMn1-xO 3. Acta Physica Sinica, doi: 10.7498/aps.63.087503
    [6] Zhang Li, Xu Ming, Yu Fei, Yuan Huan, Ma Tao. Crystal structures and optical properties of(Fe, Co)-codoped ZnO thin films. Acta Physica Sinica, doi: 10.7498/aps.62.027501
    [7] Zeng Le-Gui, Liu Fa-Min, Zhong Wen-Wu, Ding Peng, Cai Lu-Gang, Zhou Chuan-Cang. Preparationand structure and optical-electrical properties of the Nb/SnO2 composite thin film. Acta Physica Sinica, doi: 10.7498/aps.60.038203
    [8] Zhang Huan, Liu Fa-Min, Ding Peng, Zhong Wen-Wu, Zhou Chuan-Cang. Preparation,structure and ferromagnetic properties of BiFeO3 nano-power. Acta Physica Sinica, doi: 10.7498/aps.59.2078
    [9] Wang Xing-Jun, Dong Bin, Zhou Zhi-Ping. Phase transformation and photoluminescence properties of Er silicate films by sol-gel method. Acta Physica Sinica, doi: 10.7498/aps.59.3554
    [10] Liu Ji- Di, Wang Yu-Hua. Synthesis and luminescent properties of Mg2+ doped Zn2SiO4:Mn2+ phosphor under VUV excitation. Acta Physica Sinica, doi: 10.7498/aps.59.3558
    [11] Hu Lin-Hua, Dai Jun, Liu Wei-Qing, Wang Kong-Jia, Dai Song-Yuan. Growth kinetics and growth process control of nanocrystalline TiO2 anatase. Acta Physica Sinica, doi: 10.7498/aps.58.1115
    [12] Liu Yan-Yan, Liu Fa-Min, Shi Xia, Ding Peng, Zhou Chuan-Cang. Preparation, structure and ferromagnetic properties of perovskite BaFeO3 nanocrystals. Acta Physica Sinica, doi: 10.7498/aps.57.7274
    [13] Xiang Wei-Dong, Tang Shan-Shan, Zhang Xi-Yan, Yang Xin-Yu, Zhang Yan-Hua. PbS quantum dot doped glass prepared by sol-gel method. Acta Physica Sinica, doi: 10.7498/aps.57.4607
    [14] Fang Hong, Sun Hui, Zhu Jun, Mao Xiang-Yu, Chen Xiao-Bing. Ferroelectric properties of Sr2Bi4Ti5O18 thin films prepared by sol-gel method. Acta Physica Sinica, doi: 10.7498/aps.55.3086
    [15] Hu Lin-Hua, Dai Song-Yuan, Wang Kong-Jia. Influence of microstructure of nanoporous TiO22 films on the perfor mance of dye-sensitized solar cells. Acta Physica Sinica, doi: 10.7498/aps.54.1914
    [16] Jia Jian-Feng, Huang Kai, Pan Qing-Tao, He De-Yan. Structures and dielectric properties of (Ba0.7Sr0.3)TiO3/LaNiO3 hetero-structure films prepared by sol-gel technique. Acta Physica Sinica, doi: 10.7498/aps.54.4406
    [17] Du Pi-Yi, Sui Shuai, Weng Wen-Jian, Han Gao-Rong, Wang Jian-Xun. Preparation and phase formation of sol-gel derived PST thin film doped with Mg. Acta Physica Sinica, doi: 10.7498/aps.54.5411
    [18] Wang Qiang, Shen Ming-Rong, Hou Fang, Gan Zhao-Qiang. The effect of baking temperature on the crystal structure and ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by sol-gel processing. Acta Physica Sinica, doi: 10.7498/aps.53.2373
    [19] Xu Run, Shen Ming-Rong, Ge Shui-Bing. . Acta Physica Sinica, doi: 10.7498/aps.51.1139
    [20] Yang He-Qing, Wang Xuan, zhang Bang-Lao, Li Yong-Fang, Zhang Liang-Ying, Yao Xi. . Acta Physica Sinica, doi: 10.7498/aps.51.178
Metrics
  • Abstract views:  86
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  25 February 2025

/

返回文章
返回