Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiplexing synchronization implementation of micro-nano laser chaotic system based on active-passive decomposition method

MU Penghua WANG Yiqiao HE Pengfei XU Yuan

Citation:

Multiplexing synchronization implementation of micro-nano laser chaotic system based on active-passive decomposition method

MU Penghua, WANG Yiqiao, HE Pengfei, XU Yuan
cstr: 32037.14.aps.74.20241659
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nanolaser (NL), as an important optical source device, has a significant influence on photonic integrated circuits and has become a research hotspot in recent years. In this work, the synchronization performance of a dual-channel laser chaotic multiplexing system is investigated based on NLs and an active-passive decomposition is used to enhance signal processing and multiplexing efficiency. By establishing a rate equation model, the synchronization characteristics of the system are analyzed, with a focus on two key parameters— Purcell factor (F ) and spontaneous emission coupling factor (β )—as well as the effects of system parameters, single-parameter mismatch, and multi-parameter mismatch. Numerical simulations show that with appropriate parameter configurations, the two master NLs can maintain low correlation, ensuring the "pseudo-orthogonality" of chaotic signals while achieving high-quality chaotic synchronization with their paired slave NLs. In this work it is found that both the Purcell factor (F ) and the spontaneous emission coupling factor (β ) significantly affect the synchronization performance of the system, and the optimal parameter ranges for achieving high-quality synchronization are identified. Additionally, the effects of feedback strength and frequency detuning are explored, revealing that frequency detuning plays a more critical role in the synchronization between the master NLs. The influence of parameter mismatches on system synchronization performance is also emphasized. The system exhibits robustness against single-parameter mismatch and has minimum influence on master-slave synchronization quality. However, multi-parameter mismatch gives rise to more complex effects. Compared with the traditional semiconductor laser systems, this system can maintain “pseudo-orthogonality” over a wider range of parameters, thus achieving higher security and lower channel interference. This research lays a theoretical foundation for chaos synchronization based on NLs and provides new insights for designing secure, stable, and efficient optical communication systems.
      Corresponding author: MU Penghua, ph_mu@ytu.edu.cn ; XU Yuan, xuyuan@ytu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020QF090) and the Yantai City 2023 School-Land Integration Development Project Fund, China (Grant No. 2323013-2023XDRH001).
    [1]

    Jiang N, Zhao A K, Liu S Q, Xue C P, Qiu K 2018 Opt. Express 26 32404Google Scholar

    [2]

    Tang Y W, Li Q L, Dong W L, Hu M, Zeng R 2021 Opt. Commun. 498 127232Google Scholar

    [3]

    Wang L S, Du X Y, Mao X X, Guo Y Y, Wang A B, Wang Y C 2024 Opt. Lett. 49 5901Google Scholar

    [4]

    Wang Y M, Huang Y, Zhou P, Li N Q 2023 Electronics 12 509Google Scholar

    [5]

    Wang L S, Guo Y Y, Wang D M, Wang Y C, Wang A B 2019 Opt. Commun. 453 124350Google Scholar

    [6]

    Rontani D, Choi D, Chang C Y, Locquet A, Citrin D S 2016 Sci. Rep. 6 35206Google Scholar

    [7]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quant. 10 991Google Scholar

    [8]

    Cai D Y, Mu P H, Huang Y, Zhou P, Li N Q 2024 Chaos Soliton. Fract. 189 115652Google Scholar

    [9]

    Li X Y, Jiang N, Zhang Q, Tang C J, Zhang Y Q, Hu G, Cao Y S, Qiu K 2023 Opt. Express 31 28764Google Scholar

    [10]

    Liu Y, Wu Z M, Tan S L, Xia G Q 2023 Opt. Laser Technol. 161 109200Google Scholar

    [11]

    Jin J Y, Jiang N, Zhang Y Q, Feng W Z, Zhao A K, Liu S Q, Peng J F, Qiu K, Zhang Q W 2022 Opt. Express 30 13647Google Scholar

    [12]

    Wang Q P, Xia G Q, Tan S L, Liu Y, Liu Y T, Zhao M R, Wu Z M 2022 Appl. Opt. 61 10086Google Scholar

    [13]

    Zhou C D, Huang Y, Yang Y G, Cai D Y, Zhou P, Lau K, Li N Q, Li X F 2024 Opto-Electron Adv. 8 240135

    [14]

    Robertson J, Wade E, Kopp Y, Bueno J, Hurtado A 2019 IEEE J. Sel. Top. Quant. 26 1

    [15]

    Xiang S Y, Wen A J, Pan W 2016 IEEE Photonics J. 8 1

    [16]

    Fan X Q, Mao X X, Wang L S, Fu S N, Wang A B, Wang Y C 2024 Opt. Lett. 49 4445Google Scholar

    [17]

    Xiang S Y, Song Z W, Gao S, Han Y N, Zhang Y H, Guo X X, Hao Y 2021 Acta Photonica Sin. 50 1020001Google Scholar

    [18]

    Xiang S Y, Ren Z X, Song Z W, Zhang Y H, Guo X X, Han G Q, Hao Y 2021 IEEE T. Neur. Net. Lear. 32 2494

    [19]

    Xiang S Y, Wang B, Wang Y, Han Y N, Wen A J, Hao Y 2019 J. Lightwave Technol. JLT 37 3987Google Scholar

    [20]

    Zhang S Y, Tang X, Xia G Q, Wu Z M 2020 Semiconductor Lasers and Applications X 11545 70

    [21]

    Huang Y, Zhou P, Lau K Y, Li N Q 2024 ACS Photonics 11 5012Google Scholar

    [22]

    Kinzel W, Kanter I 2007 Handbook of Chaos Control pp301–324

    [23]

    Li A R, Jiang N, Geng Y, Zhang Q, Xiao Y L, Zhang Y Q, Xu B, Qiu K 2024 J. Lightw. Technol. 42 8730Google Scholar

    [24]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Chin. Phys. 16 1996Google Scholar

    [25]

    Wang Z R, Li P, Jia Z W, Wang W J, Xu B J, Shore K A, Wang Y C 2021 Opt. Express 29 17940Google Scholar

    [26]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. 19 1874Google Scholar

    [27]

    Saldutti M, Yu Y, Mørk J 2024 Laser Photonics Rev. 18 2300840Google Scholar

    [28]

    Fan Y L, Shi T, Zhang J, Shore K A 2024 Opt. Express 32 19361Google Scholar

    [29]

    Fan Y L, Shore K A, Shao X P 2023 Photonics 10 1249Google Scholar

    [30]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016Google Scholar

    [31]

    Flunkert V, Schöll E 2012 New J. Phys. 14 033039Google Scholar

    [32]

    El-Azab J, El-Khodary A, Hassab-Elnaby S 2013 High Capacity Optical Networks and Emerging/Enabling Technologies, Magosa, Cyprus, 2013, pp199–203

    [33]

    Liu H J, Feng J C 2011 J. Electron. (China) 28 126Google Scholar

    [34]

    赵跃鹏, 张明, 江安义, 王云才 2008 光学学报 28 1236

    Zhao Y P, Zhang M, Jiang A Y, Wang Y C 2008 Acta Opt. Sin. 28 1236

    [35]

    Jiang N, Zhao A K, Xue C P, et al. 2019 Opt. Lett. 44 1536Google Scholar

    [36]

    Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208Google Scholar

    [37]

    穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰 2015 物理学报 64 124206Google Scholar

    Mu P H, Pan W, Li N Q, Yan L S, Lou B, Zou X H, Xu M F 2015 Acta Phys Sin. 64 124206Google Scholar

    [38]

    Zhang X T, Guo G, Liu X T, Hu G S, Wang K, Mu P H 2023 Photonics 10 1196Google Scholar

    [39]

    Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69Google Scholar

    [40]

    Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quant. 55 1

    [41]

    Jiang P, Zhou P, Li N Q, et al. 2020 Opt. Express 28 26421Google Scholar

    [42]

    Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101Google Scholar

    [43]

    Sattar Z A, Shore K A 2015 IEEE J. Sel. Topi. Quant. 21 500Google Scholar

    [44]

    Sattar Z A, Shore K A 2016 IEEE J. Quant. 52 1

    [45]

    蒋培, 周沛, 李念强, 穆鹏华, 李孝峰 2021 物理学报 70 114201Google Scholar

    Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2021 Acta Phys. Sin. 70 114201Google Scholar

  • 图 1  基于纳米激光器的双路激光混沌复用系统结构图

    Figure 1.  Structure diagram of the dual-laser chaotic multiplexing system based on nanolasers.

    图 2  M1/S1和M2/S2的混沌时间序列 (a) M1; (b) M2; (c) S1; (d) S2

    Figure 2.  The time series of M1/S1 and M2/S2: (a) M1; (b) M2; (c) S1; (d) S2.

    图 3  (a) M1/S1和(b) M2/S2的互相关函数图

    Figure 3.  Cross-correlation function plots of (a) M1/S1 and (b) M2/S2.

    图 4  M1/M2的同步图

    Figure 4.  Synchronization diagram of M1/M2.

    图 5  $F$和$\beta $不同时, NLs之间的CCF图 (a) M1/M2; (b) M1/S1; (c) M2/S2

    Figure 5.  CCF plots between NLs under different values of $F$ and $\beta $: (a) M1/M2; (b) M1/S1; (c) M2/S2.

    图 6  不同$I$值对M1/M2, M1/S1和M2/S2同步影响图 (a) M1/M2; (b) M1/S1; (c) M2/S2

    Figure 6.  Effect of different I values on the synchronization of M1/M2, M1/S1, and M2/S2: (a) M1/M2; (b) M1/S1; (c) M2/S2.

    图 7  反馈强度和频率失谐对(a) M1/M2, (b) M1/S1和(c) M2/S2同步性影响的二维彩图

    Figure 7.  The two-dimensional colormap of feedback intensity and frequency detuning on the synchronization of (a) M1/M2, (b) M1/S1, and (c) M2/S2.

    图 8  单个参数失配对(a) M1/M2, (b) M1/S1和(c) M2/S2同步影响图

    Figure 8.  Effect of single parameter mismatch on the synchronization of (a) M1/M2, (b) M1/S1, and (c) M2/S2.

    图 9  参数失配对(a) M1/M2, (b) M1/S1和(c) M2/S2同步影响的二维图

    Figure 9.  The two-dimensional colormap of the effects of parameter mismatch on the synchronization of (a) M1/M2, (b) M1/S1, and (c) M2/S2.

    表 1  仿真中使用的参数[41]

    Table 1.  Parameters used in the simulation[41].

    参数符号参考值
    约束因子$\varGamma $0.645
    载流子寿命/ns${\tau _{\text{n}}}$1
    光子寿命/ps${\tau _{\text{p}}}$0.36
    反馈延迟/ns${\tau _{\text{d}}}$0.2
    差分增益/(cm3·s–1)${g_n}$1.64 × 10–6
    透明载流子密度/cm–3${N_0}$1.1 × 10–18
    增益饱和因子/cm3$\varepsilon $2.3 × 10–17
    线宽增强因子$\alpha $5
    活性区体积/cm3${V_{\text{α }}}$3.96 × 10–13
    纳米激光器的波长/nm${\lambda _0}$1591
    激光面反射率$R$0.85
    注入比${R_{{\text{inj}}}}$0—0.1
    外镜的功率反射率${R_{{\text{ext}}}}$0.95
    折射率$n$3.4
    空腔长度/μm$L$1.39
    反馈耦合分数$f$0—0.9
    DownLoad: CSV
  • [1]

    Jiang N, Zhao A K, Liu S Q, Xue C P, Qiu K 2018 Opt. Express 26 32404Google Scholar

    [2]

    Tang Y W, Li Q L, Dong W L, Hu M, Zeng R 2021 Opt. Commun. 498 127232Google Scholar

    [3]

    Wang L S, Du X Y, Mao X X, Guo Y Y, Wang A B, Wang Y C 2024 Opt. Lett. 49 5901Google Scholar

    [4]

    Wang Y M, Huang Y, Zhou P, Li N Q 2023 Electronics 12 509Google Scholar

    [5]

    Wang L S, Guo Y Y, Wang D M, Wang Y C, Wang A B 2019 Opt. Commun. 453 124350Google Scholar

    [6]

    Rontani D, Choi D, Chang C Y, Locquet A, Citrin D S 2016 Sci. Rep. 6 35206Google Scholar

    [7]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quant. 10 991Google Scholar

    [8]

    Cai D Y, Mu P H, Huang Y, Zhou P, Li N Q 2024 Chaos Soliton. Fract. 189 115652Google Scholar

    [9]

    Li X Y, Jiang N, Zhang Q, Tang C J, Zhang Y Q, Hu G, Cao Y S, Qiu K 2023 Opt. Express 31 28764Google Scholar

    [10]

    Liu Y, Wu Z M, Tan S L, Xia G Q 2023 Opt. Laser Technol. 161 109200Google Scholar

    [11]

    Jin J Y, Jiang N, Zhang Y Q, Feng W Z, Zhao A K, Liu S Q, Peng J F, Qiu K, Zhang Q W 2022 Opt. Express 30 13647Google Scholar

    [12]

    Wang Q P, Xia G Q, Tan S L, Liu Y, Liu Y T, Zhao M R, Wu Z M 2022 Appl. Opt. 61 10086Google Scholar

    [13]

    Zhou C D, Huang Y, Yang Y G, Cai D Y, Zhou P, Lau K, Li N Q, Li X F 2024 Opto-Electron Adv. 8 240135

    [14]

    Robertson J, Wade E, Kopp Y, Bueno J, Hurtado A 2019 IEEE J. Sel. Top. Quant. 26 1

    [15]

    Xiang S Y, Wen A J, Pan W 2016 IEEE Photonics J. 8 1

    [16]

    Fan X Q, Mao X X, Wang L S, Fu S N, Wang A B, Wang Y C 2024 Opt. Lett. 49 4445Google Scholar

    [17]

    Xiang S Y, Song Z W, Gao S, Han Y N, Zhang Y H, Guo X X, Hao Y 2021 Acta Photonica Sin. 50 1020001Google Scholar

    [18]

    Xiang S Y, Ren Z X, Song Z W, Zhang Y H, Guo X X, Han G Q, Hao Y 2021 IEEE T. Neur. Net. Lear. 32 2494

    [19]

    Xiang S Y, Wang B, Wang Y, Han Y N, Wen A J, Hao Y 2019 J. Lightwave Technol. JLT 37 3987Google Scholar

    [20]

    Zhang S Y, Tang X, Xia G Q, Wu Z M 2020 Semiconductor Lasers and Applications X 11545 70

    [21]

    Huang Y, Zhou P, Lau K Y, Li N Q 2024 ACS Photonics 11 5012Google Scholar

    [22]

    Kinzel W, Kanter I 2007 Handbook of Chaos Control pp301–324

    [23]

    Li A R, Jiang N, Geng Y, Zhang Q, Xiao Y L, Zhang Y Q, Xu B, Qiu K 2024 J. Lightw. Technol. 42 8730Google Scholar

    [24]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Chin. Phys. 16 1996Google Scholar

    [25]

    Wang Z R, Li P, Jia Z W, Wang W J, Xu B J, Shore K A, Wang Y C 2021 Opt. Express 29 17940Google Scholar

    [26]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. 19 1874Google Scholar

    [27]

    Saldutti M, Yu Y, Mørk J 2024 Laser Photonics Rev. 18 2300840Google Scholar

    [28]

    Fan Y L, Shi T, Zhang J, Shore K A 2024 Opt. Express 32 19361Google Scholar

    [29]

    Fan Y L, Shore K A, Shao X P 2023 Photonics 10 1249Google Scholar

    [30]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016Google Scholar

    [31]

    Flunkert V, Schöll E 2012 New J. Phys. 14 033039Google Scholar

    [32]

    El-Azab J, El-Khodary A, Hassab-Elnaby S 2013 High Capacity Optical Networks and Emerging/Enabling Technologies, Magosa, Cyprus, 2013, pp199–203

    [33]

    Liu H J, Feng J C 2011 J. Electron. (China) 28 126Google Scholar

    [34]

    赵跃鹏, 张明, 江安义, 王云才 2008 光学学报 28 1236

    Zhao Y P, Zhang M, Jiang A Y, Wang Y C 2008 Acta Opt. Sin. 28 1236

    [35]

    Jiang N, Zhao A K, Xue C P, et al. 2019 Opt. Lett. 44 1536Google Scholar

    [36]

    Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208Google Scholar

    [37]

    穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰 2015 物理学报 64 124206Google Scholar

    Mu P H, Pan W, Li N Q, Yan L S, Lou B, Zou X H, Xu M F 2015 Acta Phys Sin. 64 124206Google Scholar

    [38]

    Zhang X T, Guo G, Liu X T, Hu G S, Wang K, Mu P H 2023 Photonics 10 1196Google Scholar

    [39]

    Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69Google Scholar

    [40]

    Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quant. 55 1

    [41]

    Jiang P, Zhou P, Li N Q, et al. 2020 Opt. Express 28 26421Google Scholar

    [42]

    Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101Google Scholar

    [43]

    Sattar Z A, Shore K A 2015 IEEE J. Sel. Topi. Quant. 21 500Google Scholar

    [44]

    Sattar Z A, Shore K A 2016 IEEE J. Quant. 52 1

    [45]

    蒋培, 周沛, 李念强, 穆鹏华, 李孝峰 2021 物理学报 70 114201Google Scholar

    Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2021 Acta Phys. Sin. 70 114201Google Scholar

  • [1] Mu Peng-Hua, Chen Hao, Liu Guo-Peng, Hu Guo-Si. Chaotic time delay feature cancellation and bandwidth enhancement in cascaded-coupled nanolasers. Acta Physica Sinica, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] Jia Ya-Qiong, Jiang Guo-Ping. Chaotic system synchronization of state-observer-based fractional-order time-delay. Acta Physica Sinica, 2017, 66(16): 160501. doi: 10.7498/aps.66.160501
    [3] Pan Guang, Wei Jing. Design of an adaptive sliding mode controller for synchronization of fractional-order chaotic systems. Acta Physica Sinica, 2015, 64(4): 040505. doi: 10.7498/aps.64.040505
    [4] Mu Peng-Hua, Pan Wei, Li Nian-Qiang, Yan Lian-Shan, Luo Bin, Zou Xi-Hua, Xu Ming-Feng. Performance of chaos synchronization and security in dual-chaotic optical multiplexing system. Acta Physica Sinica, 2015, 64(12): 124206. doi: 10.7498/aps.64.124206
    [5] Han Dong, Zhu Fang-Lai. High-gain reduced-order observer-based synchronization for a kind of uncertain chaotic system. Acta Physica Sinica, 2013, 62(12): 120513. doi: 10.7498/aps.62.120513
    [6] Wei Yue, Fan Li, Xia Guang-Qiong, Chen Yu-Lin, Wu Zheng-Mao. Bidirectional chaos communication based on two semiconductor lasers subjected to incoherent optical injection of common-chaotic-signal. Acta Physica Sinica, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [7] He Yuan, Deng Tao, Wu Zheng-Mao, Liu Yuan-Yuan, Xia Guang-Qiong. Investigations on chaos synchronization characteristics of mutually coupled semiconductor lasers with asymmetrical bias currents. Acta Physica Sinica, 2011, 60(4): 044204. doi: 10.7498/aps.60.044204
    [8] Cao liang-Ping, Xia Guang-Qiong, Deng Tao, Lin Xiao-Dong, Wu Zheng-Mao. Bidirectional chaos communication based on semiconductor laser with incoherent optical feedback. Acta Physica Sinica, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [9] Wang Xiao-Fa, Xia Guang-Qiong, Wu Zheng-Mao. Chaotic synchronization performances of two unidirectionally coupled VCSELs subject to negative optoelectronic feedback. Acta Physica Sinica, 2009, 58(7): 4669-4674. doi: 10.7498/aps.58.4669
    [10] Fan Li, Xia Guang-Qiong, Wu Zheng-Mao. Chaotic parallel synchronization of optoelectronic feedback semiconductor lasers. Acta Physica Sinica, 2009, 58(2): 989-994. doi: 10.7498/aps.58.989
    [11] Zhang Xiu-Juan, Wang Bing-Jie, Yang Ling-Zhen, Wang An-Bang, Guo Dong-Ming, Wang Yun-Cai. Flat broadband chaotic carrier generation and synchronization. Acta Physica Sinica, 2009, 58(5): 3203-3207. doi: 10.7498/aps.58.3203
    [12] Li Xiu-Chun, Xu Wei, Xiao Yu-Zhu. Robust synchronization of a class of chaotic systems based on integral observer method. Acta Physica Sinica, 2008, 57(3): 1465-1470. doi: 10.7498/aps.57.1465
    [13] Wang Yun-Cai, Li Yan-Li, Wang An-Bang, Wang Bing-Jie, Zhang Geng-Wei, Guo Ping. High frequency message filtering characteristics of semiconductor laser as receiver in optical chaos communications. Acta Physica Sinica, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [14] Zhou Ping. Synchronization for a class of chaotic systems via scalar controller. Acta Physica Sinica, 2007, 56(7): 3777-3781. doi: 10.7498/aps.56.3777
    [15] Lü Ling, Guo Zhi-An, Li Yan, Xia Xiao-Lan. Parameter identification and backstepping design of synchronization controller for uncertain chaotic system. Acta Physica Sinica, 2007, 56(1): 95-100. doi: 10.7498/aps.56.95
    [16] Liao Jian-Fei, Xia Guang-Qiong, Wu Jia-Gui, Xu Li, Wu Zheng-Mao. Investigation on the cascade synchronization system based on the optoelectronic negative feedback chaotic lasers. Acta Physica Sinica, 2007, 56(11): 6301-6306. doi: 10.7498/aps.56.6301
    [17] Li Xiao-Feng, Pan Wei, Ma Dong, Luo Bin, Zhang Wei-Li, Xiong Yue. Effects of spontaneous emission noise in semiconductor lasers on chaotic optical communication systems. Acta Physica Sinica, 2006, 55(10): 5094-5104. doi: 10.7498/aps.55.5094
    [18] Chen Jing, Zhang Tian-Ping. Synchronization of a class of uncertain chaotic systems by observer. Acta Physica Sinica, 2006, 55(8): 3928-3932. doi: 10.7498/aps.55.3928
    [19] Gao Tie-Gang, Chen Zeng-Qiang, Yuan Zhu-Zhi, Gu Qiao-Lun. Study on synchronization of chaotic systems based on observer. Acta Physica Sinica, 2004, 53(5): 1305-1308. doi: 10.7498/aps.53.1305
    [20] Jiang Pin-Qun, Luo Xiao-Shu, Wang Bing-Hong, Fang Jin-Qing, Chen Guan-Rong, Zhou Yan-Li. . Acta Physica Sinica, 2002, 51(9): 1937-1941. doi: 10.7498/aps.51.1937
Metrics
  • Abstract views:  507
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2024
  • Accepted Date:  27 December 2024
  • Available Online:  13 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回