搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双路激光混沌复用系统的混沌同步及安全性能研究

穆鹏华 潘炜 李念强 闫连山 罗斌 邹喜华 徐明峰

引用本文:
Citation:

双路激光混沌复用系统的混沌同步及安全性能研究

穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰

Performance of chaos synchronization and security in dual-chaotic optical multiplexing system

Mu Peng-Hua, Pan Wei, Li Nian-Qiang, Yan Lian-Shan, Luo Bin, Zou Xi-Hua, Xu Ming-Feng
PDF
导出引用
  • 针对一种新型的双路激光混沌复用系统, 建立相应的速率方程模型, 详细分析了两个主激光器的单个参数失配、多个参数同时失配、反馈强度差异以及频率失谐对混沌同步性能的影响, 并对此复用系统的安全性能和频谱性能进行了研究. 研究结果表明: 采用参数失配方案, 通过合理选择两个主激光器的参数, 可以保证两个主激光器之间的同步性能较差而两对主从激光器间实现高品质的混沌同步, 因此满足双路激光混沌复用的条件; 两个主激光器之间的参数失配对它们之间的同步性能影响较大, 然而对配对主从激光器间同步性能的影响并不明显, 进一步说明参数失配方案的有效性和可行性. 另外, 通过自相关函数和频谱分别分析混沌复用信号的时域和频域特征, 发现双路激光混沌复用系统可提供更高的安全性.
    Based on a novel multiplexing system of two distinct chaotic signals, the corresponding modified Lang-Kobayashi rate equations are established. The numerical investigations into the performance of chaos synchronization are carried out. In more detail, the influences of single-parameter mismatch, multi-parameter mismatch, feedback-strength discrepancy, and frequency detuning between the two master semiconductor lasers (MLs) on synchronization performance are investigated, respectively. Moreover, the security and spectrum characteristics are addressed briefly in this work. The numerical simulations show that by adopting parameter mismatch, i.e., choosing appropriate system parameters of the two MLs, the correlation between the two MLs becomes extremely low, while the matched master-slave laser pairs can achieve high-quality chaos synchronization, indicating that the condition of optical chaos multiplexing is satisfied; the parameter mismatch between the MLs has a significant influence on their synchronization quality, but no obvious influence on their synchronization quality of the matched master-slave laser pairs, which further demonstrates the validity and feasibility of the chaos multiplexing scheme. More importantly, in this paper, the multiplexed chaotic signals in the time and frequency domains in terms of autocorrelation function and power spectrum are analyzed, demonstrating that the present system could provide higher security than the single external-cavity semiconductor laser.
    • 基金项目: 国家自然科学基金(批准号:61274042)和西南交通大学博士创新基金(2013-2016)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61274042) and the Doctoral Innovation Funds of Southwest Jiaotong University, China (2013-2016).
    [1]

    Heil T, Mulet J, Fischer I, Mirasso C R, Peil M, Colet P 2002 IEEE J. Quantum Electron. 38 1162

    [2]

    Rogister F, Locquet A, Pieroux D, Sciamanna M, Deparis O, Megret P, Blondel M 2001 Opt. Lett. 26 1486

    [3]

    Pisarchik A N, Ruiz-Oliveras F R 2010 IEEE J. Quantum Electron. 46 279

    [4]

    Paul J, Sivaprakasam S, Shore K A 2004 J. Opt. Soc. Am. B 21 514

    [5]

    Annovazzi L V, Donati S, Scire A 1996 IEEE J. Quantum Electron. 32 953

    [6]

    Argyris A, Syvrids D, Larger L, Annovazzi V, Colet P, Fischer P, Garcia O J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [7]

    Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101

    [8]

    Li X F, Pan W, Luo B, Ma D 2006 IEEE. J. Quantum Electron. 42 953

    [9]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991

    [10]

    Wang A B, Wang Y C 2010 Sci. China: Inform. Sci. 53 398

    [11]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 1 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子进展 50 1]

    [12]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [13]

    Zhang J Z, Wang Y C, Liu M, Xue L G, Li P, Wang A B, Zhang M J 2012 Opt. Express 20 7496

    [14]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [15]

    Hu H P, Su W, Liu L F, Yu Z L 2014 Phys. Lett. A 378 184

    [16]

    Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326

    [17]

    Yan S L 2012 Commun. Nonlinear Sci. 17 2896

    [18]

    Liu Y R, Wu Z M, Wu J G, Li P, Xia G Q 2012 Acta Phys. Sin. 61 024203 (in Chinese) [刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼 2012 物理学报 61 024203]

    [19]

    Deng W, Xia G Q, Wu Z M 2013 Acta Phys. Sin. 62 164209 (in Chinese) [邓伟, 夏光琼, 吴正茂 2013 物理学报 62 164209]

    [20]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y 2008 IEEE Photon. Technol. Lett. 20 712

    [21]

    Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 物理学报 58 3793]

    [22]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016

    [23]

    Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208

    [24]

    Zhao Q C, Yin H X, Chen X L 2012 Appl. Opt. 51 5585

    [25]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [26]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [27]

    Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97

    [28]

    Wu J Q, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [29]

    Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y, Mu P H 2012 IEEE J. Quantum Electron. 48 1339

    [30]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y 2013 IEEE J. Sel. Topics Quantum Electron. 19 0600109

    [31]

    Wu J Q, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 759

  • [1]

    Heil T, Mulet J, Fischer I, Mirasso C R, Peil M, Colet P 2002 IEEE J. Quantum Electron. 38 1162

    [2]

    Rogister F, Locquet A, Pieroux D, Sciamanna M, Deparis O, Megret P, Blondel M 2001 Opt. Lett. 26 1486

    [3]

    Pisarchik A N, Ruiz-Oliveras F R 2010 IEEE J. Quantum Electron. 46 279

    [4]

    Paul J, Sivaprakasam S, Shore K A 2004 J. Opt. Soc. Am. B 21 514

    [5]

    Annovazzi L V, Donati S, Scire A 1996 IEEE J. Quantum Electron. 32 953

    [6]

    Argyris A, Syvrids D, Larger L, Annovazzi V, Colet P, Fischer P, Garcia O J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [7]

    Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101

    [8]

    Li X F, Pan W, Luo B, Ma D 2006 IEEE. J. Quantum Electron. 42 953

    [9]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991

    [10]

    Wang A B, Wang Y C 2010 Sci. China: Inform. Sci. 53 398

    [11]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 1 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子进展 50 1]

    [12]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [13]

    Zhang J Z, Wang Y C, Liu M, Xue L G, Li P, Wang A B, Zhang M J 2012 Opt. Express 20 7496

    [14]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [15]

    Hu H P, Su W, Liu L F, Yu Z L 2014 Phys. Lett. A 378 184

    [16]

    Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326

    [17]

    Yan S L 2012 Commun. Nonlinear Sci. 17 2896

    [18]

    Liu Y R, Wu Z M, Wu J G, Li P, Xia G Q 2012 Acta Phys. Sin. 61 024203 (in Chinese) [刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼 2012 物理学报 61 024203]

    [19]

    Deng W, Xia G Q, Wu Z M 2013 Acta Phys. Sin. 62 164209 (in Chinese) [邓伟, 夏光琼, 吴正茂 2013 物理学报 62 164209]

    [20]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y 2008 IEEE Photon. Technol. Lett. 20 712

    [21]

    Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 物理学报 58 3793]

    [22]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016

    [23]

    Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208

    [24]

    Zhao Q C, Yin H X, Chen X L 2012 Appl. Opt. 51 5585

    [25]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [26]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [27]

    Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97

    [28]

    Wu J Q, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [29]

    Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y, Mu P H 2012 IEEE J. Quantum Electron. 48 1339

    [30]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y 2013 IEEE J. Sel. Topics Quantum Electron. 19 0600109

    [31]

    Wu J Q, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 759

  • [1] 谭平安, 杨磊, 张波. 基于微分几何理论的参数失配系统时空同步研究. 物理学报, 2013, 62(23): 230507. doi: 10.7498/aps.62.230507
    [2] 吕翎, 李雨珊, 韦琳玲, 于淼, 张檬. 基于滑模控制法实现规则网络的混沌同步. 物理学报, 2012, 61(12): 120504. doi: 10.7498/aps.61.120504
    [3] 唐良瑞, 樊冰, 亢中苗. 利用混沌信号幅值实现混沌同步. 物理学报, 2012, 61(8): 080508. doi: 10.7498/aps.61.080508
    [4] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信 . 物理学报, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [5] 付士慧, 裴利军. 具有非线性控制的Chua电路的混沌同步. 物理学报, 2010, 59(9): 5985-5989. doi: 10.7498/aps.59.5985
    [6] 杨东升, 张化光, 赵琰, 宋崇辉, 王迎春. 基于LMI的参数未知时变时滞混沌系统模糊自适应H∞同步. 物理学报, 2010, 59(3): 1562-1567. doi: 10.7498/aps.59.1562
    [7] 吕翎, 张超. 一类节点结构互异的复杂网络的混沌同步. 物理学报, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [8] 张秀娟, 王冰洁, 杨玲珍, 王安帮, 郭东明, 王云才. 平坦宽带混沌激光的产生及同步. 物理学报, 2009, 58(5): 3203-3207. doi: 10.7498/aps.58.3203
    [9] 蔡娜, 井元伟, 张嗣瀛. 不同结构混沌系统的自适应同步和反同步. 物理学报, 2009, 58(2): 802-813. doi: 10.7498/aps.58.802
    [10] 樊利, 夏光琼, 吴正茂. 基于光电反馈的激光混沌并联同步系统研究. 物理学报, 2009, 58(2): 989-994. doi: 10.7498/aps.58.989
    [11] 王建根, 蔡建平, 马米花, 冯久超. 参数失配的受迫振动系统有误差界的同步判据. 物理学报, 2008, 57(6): 3367-3373. doi: 10.7498/aps.57.3367
    [12] 吕 翎, 郭治安, 李 岩, 夏晓岚. 不确定混沌系统的参数识别与同步控制器的backstepping设计. 物理学报, 2007, 56(1): 95-100. doi: 10.7498/aps.56.95
    [13] 马铁东, 张化光, 王智良. 一类参数不确定统一混沌系统的脉冲滞后同步. 物理学报, 2007, 56(7): 3796-3802. doi: 10.7498/aps.56.3796
    [14] 张 勇, 陈天麒, 陈 滨. 跃变参数混沌同步及其应用. 物理学报, 2007, 56(1): 56-66. doi: 10.7498/aps.56.56
    [15] 廖健飞, 夏光琼, 吴加贵, 许 黎, 吴正茂. 基于光电负反馈的激光混沌串联同步系统研究. 物理学报, 2007, 56(11): 6301-6306. doi: 10.7498/aps.56.6301
    [16] 李 爽, 徐 伟, 李瑞红, 李玉鹏. 异结构系统混沌同步的新方法. 物理学报, 2006, 55(11): 5681-5687. doi: 10.7498/aps.55.5681
    [17] 陈志盛, 孙克辉, 张泰山. Liu混沌系统的非线性反馈同步控制. 物理学报, 2005, 54(6): 2580-2583. doi: 10.7498/aps.54.2580
    [18] 李国辉, 徐得名, 周世平. 基于状态观测器的参数调制混沌数字通信. 物理学报, 2004, 53(3): 706-709. doi: 10.7498/aps.53.706
    [19] 李国辉, 徐得名, 周世平. 随机性参数自适应的混沌同步. 物理学报, 2004, 53(2): 379-382. doi: 10.7498/aps.53.379
    [20] 戴栋, 马西奎. 基于间歇性参数自适应控制的混沌同步. 物理学报, 2001, 50(7): 1237-1240. doi: 10.7498/aps.50.1237
计量
  • 文章访问数:  2606
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-20
  • 修回日期:  2014-12-17
  • 刊出日期:  2015-06-05

双路激光混沌复用系统的混沌同步及安全性能研究

  • 1. 西南交通大学信息光子与通信研究中心, 成都 610031
    基金项目: 国家自然科学基金(批准号:61274042)和西南交通大学博士创新基金(2013-2016)资助的课题.

摘要: 针对一种新型的双路激光混沌复用系统, 建立相应的速率方程模型, 详细分析了两个主激光器的单个参数失配、多个参数同时失配、反馈强度差异以及频率失谐对混沌同步性能的影响, 并对此复用系统的安全性能和频谱性能进行了研究. 研究结果表明: 采用参数失配方案, 通过合理选择两个主激光器的参数, 可以保证两个主激光器之间的同步性能较差而两对主从激光器间实现高品质的混沌同步, 因此满足双路激光混沌复用的条件; 两个主激光器之间的参数失配对它们之间的同步性能影响较大, 然而对配对主从激光器间同步性能的影响并不明显, 进一步说明参数失配方案的有效性和可行性. 另外, 通过自相关函数和频谱分别分析混沌复用信号的时域和频域特征, 发现双路激光混沌复用系统可提供更高的安全性.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回