Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of microwave-phonon and magnon-optics entangled states

XU Minghui LIU Xiaomin SHI Jiajia ZHANG Chong ZHANG Jing YANG Rongguo GAO Jiangrui

Citation:

Generation of microwave-phonon and magnon-optics entangled states

XU Minghui, LIU Xiaomin, SHI Jiajia, ZHANG Chong, ZHANG Jing, YANG Rongguo, GAO Jiangrui
cstr: 32037.14.aps.74.20241664
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Quantum entanglement is a key resource for performing quantum computing and building quantum communication networks. By injecting a microwave-optical dual-mode entanglement field into the system, as well as pumping the optical and microwave cavities, and by appropriately choosing the detuning relationship between the pumping field and the modes, it is shown in this work that microwave-phonon entanglement Eab and magnon-optics entanglement Ecm can be generated simultaneously in the cavity opto-magnomechanic system, and the entanglement can be in a steady state. Specifically, the model is based on a hybrid quantum system of magnons, where a microwave-light entanglement generated by an optically pulsed superconducting electro-optical device through spontaneous parametric down-conversion process is injected as the intracavity field, and a blue-detuned microwave field is used to excite the magnon modes to produce magnon-phonon entanglement. Through the interaction between an optomechanical beam splitter and microwave-magnon state-swap, steady microwave-phonon entanglement Eab and magnon-optics entanglement Ecm are successfully realized. The entanglement Eab and Ecm in the system are analyzed using the logarithmic negativity. The effects of several parameters of the system, such as environment temperature, coupling strength and dissipation rate, on the degree of entanglement are investigated. In particular, the entanglement Eab and Ecm generated in this system can exist both simultaneously and individually. Especially when gam = 0, the entanglement Eab and Ecm still exist. Moreover, directly injecting entangled microwave-light into the system can significantly enhance the robustness of the entanglement against temperature, which will have broad application prospects in quantum information processing in quantum networks and hybrid quantum systems. Notably, the entanglement Eab and Ecm exist even at a temperature of 1.3 K. Our research has potential value for applications in the fields of quantum information processing and quantum networks.
      Corresponding author: YANG Rongguo, yrg@sxu.edu.cn
    • Funds: Project supported by the National Research and Develoment Program of China (Grant No. 2021YFC2201802), the National Natural Science Foundation of China (Grant Nos. 11874248, 11874249), and the Foundation of National Key Laboratory of Radar Signal Processing, China (Grant No. JKW202401).
    [1]

    Tang J F, Hou Z B, Shang J W , Zhu H J, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. Lett. 124 060502Google Scholar

    [2]

    Konrad T, De Melo F, Tiersch M, Kasztelan C, Aragão A, 2008 Buchleitner A Nat. Phys. 4 99Google Scholar

    [3]

    Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621Google Scholar

    [4]

    杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar

    Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar

    [5]

    Liang Y Y, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 11775Google Scholar

    [6]

    Zhang K, Wang W, Liu S H, Pan X Z, Du J J, Lou Y B, Yu S, Lü S C, Treps N, Fabre C, Jing J T 2020 Phys. Rev. Lett. 124 090501Google Scholar

    [7]

    郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞 2024 物理学报 73 074203Google Scholar

    Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G, Gao J R 2024 Acta Phys. Sin. 73 074203Google Scholar

    [8]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [9]

    Liu K, Cui S Z, Yang R G, Zhang J X, Gao J R 2012 Chin. Phys. Lett. 29 060304Google Scholar

    [10]

    刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞 2020 物理学报 69 124203Google Scholar

    Liu K, Ma L, Su B D, Li J M, Sun H X, Gao J R 2020 Acta Phys. Sin. 69 124203Google Scholar

    [11]

    Yang R G, Zhang J, Klich I, González-Arciniegas C, Pfister O 2020 Phys. Rev. A 101 043832Google Scholar

    [12]

    Du P L, Wang Y, Liu K, Yang R G, Zhang J 2023 Opt. Express 31 479420

    [13]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [14]

    Liu X M, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 30005Google Scholar

    [15]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [16]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [17]

    Riedinger R, Wallucks A, Marinkovi´c I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [18]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952Google Scholar

    [19]

    Zhang X F, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar

    [20]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601Google Scholar

    [21]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [22]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [23]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [24]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601Google Scholar

    [25]

    Zhang X F, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605Google Scholar

    [26]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602Google Scholar

    [27]

    Zhu N, Zhang X, Han X, Zou C L, Zhong C, Wang C H, Jiang L, Tang H X 2020 Optica 7 1291Google Scholar

    [28]

    Haigh J A, Nunnenkamp A, Ramsay A J 2021 Phys. Rev. Lett. 127 143601Google Scholar

    [29]

    Yang Z B, Liu X D, Yin X Y, Ming Y, Liu H Y, Yang R C 2021 Phys. Rev. Appl. 15 024042Google Scholar

    [30]

    Yin X Y, Yang Z B, Huang Y M, Wan Q M, Yang R C, Liu H Y 2023 Ann. Phys. 535 2200603Google Scholar

    [31]

    Fan Z Y, Shen R C, Wang Y P, Li J, You J Q 2022 Phys. Rev. A 105 033507Google Scholar

    [32]

    Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014Google Scholar

    [33]

    Fan Z Y, Qiu L, Gröblacher S, Li J 2023 Laser Photonics Rev. 17 2200866Google Scholar

    [34]

    Rueda A, Hease W, Barzanjeh S, Fink J M 2019 npj Quantum Inf. 5 108Google Scholar

    [35]

    Hease W, Rueda A, Sahu R, Wulf M, Arnold G, Schwefel H G L, Fink J M 2020 PRX Quantum 1 020315Google Scholar

    [36]

    Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr. 91 053001Google Scholar

    [37]

    Sahu R, Qiu L, Hease W, Arnold G, Minoguchi Y, Rabl P, Fink J M 2023 Science 380 718Google Scholar

    [38]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [39]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar

    [40]

    Heyroth F, Hauser C, Trempler P, Geyer P, Syrowatka F, Dreyer R, Ebbinghaus S G, Woltersdorf G, Schmidt G 2019 Phys. Rev. Appl. 12 054031Google Scholar

    [41]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [42]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

    [43]

    Tan H T, Deng W W, Li G X 2017 Phys. Rev. A 95 053842Google Scholar

    [44]

    Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y, Yang R C 2023 Opt. Express 31 34764Google Scholar

  • 图 1  (a), (b) OMM系统示意图. YIG晶体中的磁振子模式m耦合到微波腔模a并且通过磁致伸缩引起振动声子b耦合到光学腔模c. 图(b)中蓝色(红色)线表示参量下转换(分束器)相互作用; (c)模型采用的模式频率和带宽. 当光学腔模与驱动激光场的反斯托克斯边带(蓝色)在频率为($ {\omega _{\text{l}}} + {\omega _{\text{b}}} $)处共振, 并且磁子模和微波腔模同时与微波驱动场的斯托克斯边带(红色)在频率为($ {\omega _0} - {\omega _{\text{b}}} $)处共振, 可以建立微波-声子以及光-磁子之间的稳态纠缠EabEcm

    Figure 1.  (a), (b) OMM system scheme. A magnon mode m in a YIG crystal couples to a microwave cavity mode a and to an optical cavity mode c via the mechanical vibration b induced by the magnetostriction. The blue (red) line in Figure (b) denotes the effective parametric down-conversion (beam-splitter) interaction; (c) mode frequency and bandwidth used adopted in the protocol. When the optical cavity is resonant with the (blue) anti-Stokes sideband of the driving laser at frequency ($ {\omega _0} - {\omega _{\text{b}}} $), and the magnon and microwave cavity modes are resonant with the (red) Stokes sideband of the microwave drive field at frequency ($ {\omega _{\text{l}}} + {\omega _{\text{b}}} $), microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm can be generated at steady state.

    图 2  稳态纠缠随磁子模式和微波腔模式有效失谐量变化密度图 (a)微波-声子纠缠Eab; (b)光-磁纠缠Ecm

    Figure 2.  Density plot of steady-state entanglement versus effective detunings ${\varDelta _{\text{a}}}$ and ${\tilde \varDelta _{\text{m}}}$: (a) Microwave-mechanics entanglement Eab; (b) magnon-optics entanglement Ecm.

    图 3  微波-声子, 光-磁以及微波-光纠缠随压缩参数r的变化

    Figure 3.  Stationary microwave-mechanics entanglement Eab, magnon-optics entanglement Ecm and microwave-optics entanglement Eac versus squeezing parameter r.

    图 4  光-磁和微波-声子之间纠缠随有效耦合强度变化 (a)有效光力耦合强度Gc; (b)有效磁力耦合强度Gm; (c)微波-磁子耦合强度gam

    Figure 4.  Stationary magnon-optics entanglement Ecm and microwave-mechanics entanglement Eab versus effective coupling strength: (a) The effective optomechanical coupling strength Gc; (b) the effective magno-mechanical coupling strength Gm; (c) the microwave-magnon coupling rate gam.

    图 5  微波-声子以及光-磁之间纠缠随不同模式耗散率变化 (a) 微波腔模耗散率$ {\kappa _{\text{a}}} $; (b) 磁振子模耗散率$ {\kappa _{\text{m}}} $; (c) 光学腔模耗散率$ {\kappa _{\text{c}}} $

    Figure 5.  Stationary microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm versus dissipation rates: (a) Microwave cavity mode dissipation rate $ {\kappa _{\text{a}}} $; (b) magnon mode dissipation rate $ {\kappa _{\text{m}}} $; (c) optical cavity mode dissipation rate $ {\kappa _{\text{c}}} $.

    图 6  微波-声子以及光-磁之间纠缠 (a) 随温度T变化; (b) 随机械振子耗散率$ {\gamma _{\text{b}}} $变化

    Figure 6.  Stationary microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm versus: (a) Temperature T; (b) mechanical damping rate $ {\gamma _{\text{b}}} $.

  • [1]

    Tang J F, Hou Z B, Shang J W , Zhu H J, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. Lett. 124 060502Google Scholar

    [2]

    Konrad T, De Melo F, Tiersch M, Kasztelan C, Aragão A, 2008 Buchleitner A Nat. Phys. 4 99Google Scholar

    [3]

    Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621Google Scholar

    [4]

    杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar

    Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar

    [5]

    Liang Y Y, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 11775Google Scholar

    [6]

    Zhang K, Wang W, Liu S H, Pan X Z, Du J J, Lou Y B, Yu S, Lü S C, Treps N, Fabre C, Jing J T 2020 Phys. Rev. Lett. 124 090501Google Scholar

    [7]

    郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞 2024 物理学报 73 074203Google Scholar

    Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G, Gao J R 2024 Acta Phys. Sin. 73 074203Google Scholar

    [8]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [9]

    Liu K, Cui S Z, Yang R G, Zhang J X, Gao J R 2012 Chin. Phys. Lett. 29 060304Google Scholar

    [10]

    刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞 2020 物理学报 69 124203Google Scholar

    Liu K, Ma L, Su B D, Li J M, Sun H X, Gao J R 2020 Acta Phys. Sin. 69 124203Google Scholar

    [11]

    Yang R G, Zhang J, Klich I, González-Arciniegas C, Pfister O 2020 Phys. Rev. A 101 043832Google Scholar

    [12]

    Du P L, Wang Y, Liu K, Yang R G, Zhang J 2023 Opt. Express 31 479420

    [13]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [14]

    Liu X M, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 30005Google Scholar

    [15]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [16]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [17]

    Riedinger R, Wallucks A, Marinkovi´c I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [18]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952Google Scholar

    [19]

    Zhang X F, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar

    [20]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601Google Scholar

    [21]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [22]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [23]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [24]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601Google Scholar

    [25]

    Zhang X F, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605Google Scholar

    [26]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602Google Scholar

    [27]

    Zhu N, Zhang X, Han X, Zou C L, Zhong C, Wang C H, Jiang L, Tang H X 2020 Optica 7 1291Google Scholar

    [28]

    Haigh J A, Nunnenkamp A, Ramsay A J 2021 Phys. Rev. Lett. 127 143601Google Scholar

    [29]

    Yang Z B, Liu X D, Yin X Y, Ming Y, Liu H Y, Yang R C 2021 Phys. Rev. Appl. 15 024042Google Scholar

    [30]

    Yin X Y, Yang Z B, Huang Y M, Wan Q M, Yang R C, Liu H Y 2023 Ann. Phys. 535 2200603Google Scholar

    [31]

    Fan Z Y, Shen R C, Wang Y P, Li J, You J Q 2022 Phys. Rev. A 105 033507Google Scholar

    [32]

    Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014Google Scholar

    [33]

    Fan Z Y, Qiu L, Gröblacher S, Li J 2023 Laser Photonics Rev. 17 2200866Google Scholar

    [34]

    Rueda A, Hease W, Barzanjeh S, Fink J M 2019 npj Quantum Inf. 5 108Google Scholar

    [35]

    Hease W, Rueda A, Sahu R, Wulf M, Arnold G, Schwefel H G L, Fink J M 2020 PRX Quantum 1 020315Google Scholar

    [36]

    Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr. 91 053001Google Scholar

    [37]

    Sahu R, Qiu L, Hease W, Arnold G, Minoguchi Y, Rabl P, Fink J M 2023 Science 380 718Google Scholar

    [38]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [39]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar

    [40]

    Heyroth F, Hauser C, Trempler P, Geyer P, Syrowatka F, Dreyer R, Ebbinghaus S G, Woltersdorf G, Schmidt G 2019 Phys. Rev. Appl. 12 054031Google Scholar

    [41]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [42]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

    [43]

    Tan H T, Deng W W, Li G X 2017 Phys. Rev. A 95 053842Google Scholar

    [44]

    Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y, Yang R C 2023 Opt. Express 31 34764Google Scholar

  • [1] SHI Jiajia, LIU Xiaomin, ZHANG Chong, XU Minghui, LIANG Yunyun, ZHANG Jing. Enhancement of optomicrowave and optomagnonic entanglements in a optomagnomechanical system with coherent feedback. Acta Physica Sinica, 2025, 74(9): . doi: 10.7498/aps.74.20241801
    [2] Hao Jing-Chen, Du Pei-Lin, Sun Heng-Xin, Liu Kui, Zhang Jing, Yang Rong-Guo, Gao Jiang-Rui. Quadripartite entanglement from two-port resonator with second-order harmonic generation. Acta Physica Sinica, 2024, 73(7): 074203. doi: 10.7498/aps.73.20231630
    [3] Chen Feng, Ren Gang. Analysis of quantum properties of two-mode coupled harmonic oscillator based on entangled state representation. Acta Physica Sinica, 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [4] Xu Xiao-Yin, Liu Sheng-Shuai, Jing Jie-Tai. Amplification of entangled beam based on four-wave mixing process. Acta Physica Sinica, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [5] Amplification of entangled beam based on four-wave mixing process. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211324
    [6] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] Wang Can-Can. Quantum entanglement and cosmological Friedmann equations. Acta Physica Sinica, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [8] Huang Xin-Yao, Xiang Yu, Sun Feng-Xiao, He Qiong-Yi, Gong Qi-Huang. Planar quantum squeezing and atom interferometry. Acta Physica Sinica, 2015, 64(16): 160304. doi: 10.7498/aps.64.160304
    [9] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [10] Liao Qing-Hong, Liu Ye. Sudden birth and control of entanglement between two atoms successively passing through a bimodal cavity. Acta Physica Sinica, 2012, 61(15): 150301. doi: 10.7498/aps.61.150301
    [11] Xu Yan, Fan Wei, Chen Bing, Li Zhao-Xin. Scheme for generating maximally two-mode entangled state in an S=1 antiferromagnetic Bose-Einstein condensation. Acta Physica Sinica, 2011, 60(6): 060305. doi: 10.7498/aps.60.060305
    [12] Wang Shu-Jing, Ma Shan-Jun. A new three-mode entangled state representation generated by beamsplitter and polarizer. Acta Physica Sinica, 2011, 60(3): 030302. doi: 10.7498/aps.60.030302
    [13] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [14] Liu Xiao-Juan, Liu Yi-Man, Zhou Bing-Ju. Entanglement and preparation for an atom interacting with two-mode coherent strong field via intensity-dependent coupling multiphoton processes. Acta Physica Sinica, 2010, 59(12): 8518-8525. doi: 10.7498/aps.59.8518
    [15] Xiong Heng-Na, Guo Hong, Jiang Jian, Chen Jun, Tang Li-Yan. The relation between the entanglement of two atoms and the entanglement of two-mode fields. Acta Physica Sinica, 2006, 55(6): 2720-2725. doi: 10.7498/aps.55.2720
    [16] Zhang Qian, Li Fu-Li, Li Hong-Rong. Teleportation of a two-mode Gaussian state through double two-mode-squeezed-state quantum channels. Acta Physica Sinica, 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
    [17] Hu Yao-Hua, Fang Mao-Fa, Liao Xiang-Ping, Zheng Xiao-Juan. Quantum entanglement of the binomial field interacting with a cascade three-level atom. Acta Physica Sinica, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [18] Zhou Qing-Chun, Zhu Shi-Ning. Entanglement of a Λ-type three-level atom with a single-mode field initially in the number state. Acta Physica Sinica, 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [19] Huang Yan-Xia, Zhao Peng-Yi, Huang Xi, Zhan Ming-Sheng. Entanglement and disentanglement in the nonlinear interaction between squeezing vacuum state field and atom. Acta Physica Sinica, 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
    [20] Wang Cheng-Zhi, Fang Miao-Fa. . Acta Physica Sinica, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
Metrics
  • Abstract views:  648
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2024
  • Accepted Date:  26 December 2024
  • Available Online:  02 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回