Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An optimization method for terahertz metamaterial absorber based on multi-objective particle swarm optimization

WANG Yurong QU Weiwei LI Guilin DENG Hu SHANG Liping

Citation:

An optimization method for terahertz metamaterial absorber based on multi-objective particle swarm optimization

WANG Yurong, QU Weiwei, LI Guilin, DENG Hu, SHANG Liping
cstr: 32037.14.aps.74.20241684
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Metamaterials can freely control terahertz waves by designing the geometric shape and direction of the unit structure to obtain the desired electromagnetic characteristics, so they have been widely used in sensing, communication and radar stealth technology. The traditional design of terahertz metamaterial absorber usually requires continuous structural adjustment and a large number of simulations to meet the expected requirements. The process largely relies on the experience of researchers, and the physical modeling and simulation solution process is time-consuming and inefficient, greatly hindering the development of metamaterial absorbers. Therefore, due to its powerful learning ability, deep learning has been used to predict the structural parameters or spectra of metamaterial absorbers. However, when designing a new structure, it is necessary to prepare a large number of training samples again, which is both time-consuming and not universal. Particle swarm optimization algorithm can quickly converge to the optimal solution through the sharing and cooperation of individual information in the group, with no need for prior preparation. Therefore, a method of fast designing terahertz metamaterial absorber is proposed based on multi-objective particle swarm optimization algorithm in this work. Taking a new center symmetric absorber structure composed of four Ls for example, the structure parameters are optimized to achieve rapid and automatic design of metamaterial absorber. The multi-objective particle swarm optimization algorithm takes the absorptivity and quality factor as independent targets to design the structure parameters of the absorber, realizing the dual-objective optimization of the absorber, and overcoming the shortcoming of the multi-objective conflicts that cannot be solved by PSO. When used for refractive index sensing, the optimally-designed absorber achieves perfect absorption at 1.613 THz with a quality factor of 319.72 and a sensing sensitivity of 264.5 GHz/RIU. In addition, the reasons of absorption peaks are analyzed in detail through impedance matching, surface current, and electric field distribution. By studying the polarization characteristics of the absorber, it is found that the absorber is not sensitive to polarization, which is more stable in practical application. In summary, the multi-objective particle swarm optimization algorithm can realize the design according to the requirements, reduce the experience requirement of researchers in the design of metamaterial absorber, thereby improving design efficiency and performance, and has great potential for application in the design of terahertz functional devices.
      Corresponding author: QU Weiwei, quweiwei@swust.edu.cn
    • Funds: Project supported by the Sichuan Provincial Science and Technology Plan, China (Grant No. 2023YFG0224) and the Sichuan Provincial Science and Technology Innovation Seedling Cultivation Project, China (Grant No. MZGC20240122).
    [1]

    崔子健, 王玥, 朱冬颖, 岳莉莎, 陈素果 2019 中国激光 46 0614023Google Scholar

    Cui Z J, Wang Y, Zhu D Y, Yue L S, Chen S G 2019 Chin. J. Lasers 46 0614023Google Scholar

    [2]

    金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆 2023 物理学报 72 084202Google Scholar

    Jin J S, Ma J C, Zhang Y, Zhang Y B, Bao S Q, Li M, Li D M, Liu M, Liu Q Z, Zhang Y X 2023 Acta Phys. Sin. 72 084202Google Scholar

    [3]

    Nadège K, Fabrice L, Mathias F, Geoffroy L 2015 Nature 525 77Google Scholar

    [4]

    Meng T H, Hu D, Zhu Q F 2018 Opt. Commun. 415 151Google Scholar

    [5]

    江晓运 2021 博士学位论文(武汉: 华中科技大学)

    Jiang X Y 2021 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology

    [6]

    潘学文, 赵全友, 梁晓琳 2021 光电子·激光 32 680

    Pan X W, Zhao Y Q, Liang X L 2021 J. Optoelectron. Laser 32 680

    [7]

    Amirhossein N R, Pejman R 2022 Micro. Nanostruct. 163 107153Google Scholar

    [8]

    Wang J C, Tu S, Chen T 2024 Physica E 155 115829Google Scholar

    [9]

    涂建军, 马丁 2023 电子学报 51 3262Google Scholar

    Tu J J, Ma D 2023 Acta Electron. Sin. 51 3262Google Scholar

    [10]

    Ma W, Cheng F, Liu Y M 2018 ACS Nano 12 6326Google Scholar

    [11]

    Huo Z Y, Zhang P Y, Ge M F, Li J, Tang T T, Shen J, Li C Y 2021 Nanomaterials 11 2672

    [12]

    Ma J, Huang Y J, Pu M B, Xu D, Luo J, Guo Y H, Luo X G 2020 J. Phys. D 53 464002Google Scholar

    [13]

    谢朝辉, 屈薇薇, 邓琥, 李桂琳, 尚丽平 2023 光学学报 43 1316001Google Scholar

    Xie Z H, Qu W W, Deng H, Li G L, Shang L P 2023 Acta Opt. Sin. 43 1316001Google Scholar

    [14]

    江晓运 2022 博士学位论文(北京: 北京科技大学)

    Feng Q 2022 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing

    [15]

    Arora C, Pattnaik S S 2020 Evol. Intell. 14 801

    [16]

    Abolfazl M, Hamid R M, Abbas Z 2023 Photonics Nanostruct. 53 101105Google Scholar

    [17]

    Chen Y, Ding Z X, Zhang M, Li M J, Zhao M, Wang J K 2021 Appl. Opt. 60 9200Google Scholar

    [18]

    韩丁, 马子寅, 王俊林, 岳莉莎, 王鑫, 刘苏雅拉图 2019 中国激光 49 1714001

    Han D, Ma Z Y, Wang J L, Wang X, Liu S Y 2022 Chin. J. Lasers 49 1714001

    [19]

    Coello C A C, Pulido G T, Lechuga M S 2004 IEEE Trans. Evol. Comput. 8 256Google Scholar

    [20]

    Leng R, Ouyang A J, Liu Y M, Yuan L W, Wu Z Y 2020 Int. J. Pattern Recognit. Artif. Intell. 34 2059008Google Scholar

    [21]

    杨佳蓬, 逯景桐, 张帅, 岳莉莎, 许建春, 毕科 2024 电子元件与材料 43 176

    Yang J P, Lu J T, Zhang S, Xu J C, Bi K 2024 Electron. Compon. Mater. 43 176

    [22]

    葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智 2022 物理学报 71 108701Google Scholar

    Ge H Y, Li L, Jiang Y Y, Li G M, Wang F, Lü M, Zhang Y, Li Z 2022 Acta Phys. Sin 71 108701Google Scholar

    [23]

    曹瑞 2021 硕士学位论文(南京: 南京邮电大学)

    Cao R 2021 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

    [24]

    Lin Q Z, Li J Q, Du Z H, Chen J Y, Zhong M 2015 Eur. J. Oper. Res. 247 732Google Scholar

    [25]

    Zhang J, Cho H, Mago P J, Zhang H G, Yang F B 2019 J. Therm. Sci. 28 1221Google Scholar

    [26]

    Xue B, Zhang M J, Browne W. N 2013 IEEE Trans. Cybern. 43 1656Google Scholar

    [27]

    吴小刚, 刘宗歧, 田立亭, 丁冬, 杨水丽 2014 电网技术 38 3405

    Wu X G, Liu Z Q, Tian L T, Ding D, Yang S L 2014 Power Syst. Technol. 38 3405

    [28]

    梁泽坤 2022 硕士学位论文(成都: 电子科技大学)

    Liang Z K 2022 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [29]

    谢朝辉 2024 硕士学位论文(绵阳: 西南科技大学)

    Xie Z H 2024 M. S. Thesis (Mianyang: Southwest University of Science and Technology

  • 图 1  单元结构示意图 (a) 单元结构侧视图; (b) 单元结构俯视图

    Figure 1.  Unit structure diagram: (a) Side view of the unit structure; (b) top view of the unit structure.

    图 2  自适应网格法步骤 (a)寻找边界; (b)边界扩张; (c)网格划分

    Figure 2.  Adaptive mesh method steps: (a) Boundary finding; (b) boundary expansion; (c) mesh generation.

    图 3  设计实现流程

    Figure 3.  Implementation flow chart.

    图 4  经过优化的单元结构及其光谱

    Figure 4.  Optimized cell structure and spectrum.

    图 5  等效阻抗的实部与虚部

    Figure 5.  The real and imaginary parts of the equivalent impedance.

    图 6  1.613 THz处表面电流和电场分布图 (a) 1.613 THz处有反射底板表面电流; (b)无反射底板表面电流; (c) 1.613 THz处表面电场分布; (d) 1.613 THz处y = 100平面电场分布; (e) 1.613 THz处x = 100平面电场分布

    Figure 6.  Surface current and electric field distribution at 1.613 THz: (a) Surface current at 1.613 THz of an absorber with reflective backplate; (b) surface current of the absorber without reflective backplate; (c) surface electric field distribution at 1.613 THz; (d) y = 100 plane electric field distribution at 1.613 THz; (e) x = 100 plane electric field distribution at 1.613 THz.

    图 7  不同折射率下主峰和次峰的谐振频率变化量及拟合曲线 (a)不同折射率下的谐振频率变化量; (b)灵敏度拟合曲线

    Figure 7.  The variation of resonant frequency of main and secondary resonant peaks under different refractive indices and their fitting curves. (a) The variation of resonant frequency under different refractive indices; (b) the sensitivity fitting curve of the resonant peak.

    图 8  吸收器不同极化角度φ (φ = 15, 30, 45, 60, 75, 90°)的吸收光谱

    Figure 8.  Absorption spectra of the absorber at different polarization angles φ ( φ = 15, 30, 45, 60, 75, 90°).

    表 1  参数优化范围

    Table 1.  Parameter optimization range.

    Parameter d l g h
    Range/μm 10—30 40—85 10—30 10—25
    DownLoad: CSV

    表 2  非支配解集

    Table 2.  Non-dominant solution set.

    g/μml/μmd/μmh/μmA/%Qf0/THz
    12754241848.87473.321.638
    21746252299.99248.311.818
    31468111596.79411.071.707
    42159211899.96277.461.631
    52558221999.56319.721.613
    DownLoad: CSV

    表 3  不同制造误差对性能的影响

    Table 3.  Effect of different manufacturing errors on performance.

    Parameterg/μml/μmd/μmh/μmA/%Qf0/THz
    PA11.24%–2.63%1.65%–3.75%89.96394.951.63
    25.3156.4722.3618.29
    PA21.43%2.06%1.95%–0.86%92.82210.751.6123
    25.3659.2022.4318.84
    PA32.52%3.25%–2.98%3.21%96.92248.101.5992
    25.6359.8821.3419.63
    PA43.66%3.72%–2.74%3.76%95.22234.951.5970
    25.9260.1621.419.72
    DownLoad: CSV

    表 4  其他设计方法与本文方法所设计的吸收器性能对比

    Table 4.  Performance comparison of absorbers designed by other design methods and the method presented in this paper.

    Ref.f0/THzA/%Q仿真次数时间/h
    [13]1.19299.9931.7100072.6
    [18]0.25—0.3599.0843.734806.33
    [28]4.4899.1874.661500
    [29]1.999.952.18020
    Proposed1.61399.56319.72404.57
    DownLoad: CSV
  • [1]

    崔子健, 王玥, 朱冬颖, 岳莉莎, 陈素果 2019 中国激光 46 0614023Google Scholar

    Cui Z J, Wang Y, Zhu D Y, Yue L S, Chen S G 2019 Chin. J. Lasers 46 0614023Google Scholar

    [2]

    金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆 2023 物理学报 72 084202Google Scholar

    Jin J S, Ma J C, Zhang Y, Zhang Y B, Bao S Q, Li M, Li D M, Liu M, Liu Q Z, Zhang Y X 2023 Acta Phys. Sin. 72 084202Google Scholar

    [3]

    Nadège K, Fabrice L, Mathias F, Geoffroy L 2015 Nature 525 77Google Scholar

    [4]

    Meng T H, Hu D, Zhu Q F 2018 Opt. Commun. 415 151Google Scholar

    [5]

    江晓运 2021 博士学位论文(武汉: 华中科技大学)

    Jiang X Y 2021 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology

    [6]

    潘学文, 赵全友, 梁晓琳 2021 光电子·激光 32 680

    Pan X W, Zhao Y Q, Liang X L 2021 J. Optoelectron. Laser 32 680

    [7]

    Amirhossein N R, Pejman R 2022 Micro. Nanostruct. 163 107153Google Scholar

    [8]

    Wang J C, Tu S, Chen T 2024 Physica E 155 115829Google Scholar

    [9]

    涂建军, 马丁 2023 电子学报 51 3262Google Scholar

    Tu J J, Ma D 2023 Acta Electron. Sin. 51 3262Google Scholar

    [10]

    Ma W, Cheng F, Liu Y M 2018 ACS Nano 12 6326Google Scholar

    [11]

    Huo Z Y, Zhang P Y, Ge M F, Li J, Tang T T, Shen J, Li C Y 2021 Nanomaterials 11 2672

    [12]

    Ma J, Huang Y J, Pu M B, Xu D, Luo J, Guo Y H, Luo X G 2020 J. Phys. D 53 464002Google Scholar

    [13]

    谢朝辉, 屈薇薇, 邓琥, 李桂琳, 尚丽平 2023 光学学报 43 1316001Google Scholar

    Xie Z H, Qu W W, Deng H, Li G L, Shang L P 2023 Acta Opt. Sin. 43 1316001Google Scholar

    [14]

    江晓运 2022 博士学位论文(北京: 北京科技大学)

    Feng Q 2022 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing

    [15]

    Arora C, Pattnaik S S 2020 Evol. Intell. 14 801

    [16]

    Abolfazl M, Hamid R M, Abbas Z 2023 Photonics Nanostruct. 53 101105Google Scholar

    [17]

    Chen Y, Ding Z X, Zhang M, Li M J, Zhao M, Wang J K 2021 Appl. Opt. 60 9200Google Scholar

    [18]

    韩丁, 马子寅, 王俊林, 岳莉莎, 王鑫, 刘苏雅拉图 2019 中国激光 49 1714001

    Han D, Ma Z Y, Wang J L, Wang X, Liu S Y 2022 Chin. J. Lasers 49 1714001

    [19]

    Coello C A C, Pulido G T, Lechuga M S 2004 IEEE Trans. Evol. Comput. 8 256Google Scholar

    [20]

    Leng R, Ouyang A J, Liu Y M, Yuan L W, Wu Z Y 2020 Int. J. Pattern Recognit. Artif. Intell. 34 2059008Google Scholar

    [21]

    杨佳蓬, 逯景桐, 张帅, 岳莉莎, 许建春, 毕科 2024 电子元件与材料 43 176

    Yang J P, Lu J T, Zhang S, Xu J C, Bi K 2024 Electron. Compon. Mater. 43 176

    [22]

    葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智 2022 物理学报 71 108701Google Scholar

    Ge H Y, Li L, Jiang Y Y, Li G M, Wang F, Lü M, Zhang Y, Li Z 2022 Acta Phys. Sin 71 108701Google Scholar

    [23]

    曹瑞 2021 硕士学位论文(南京: 南京邮电大学)

    Cao R 2021 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

    [24]

    Lin Q Z, Li J Q, Du Z H, Chen J Y, Zhong M 2015 Eur. J. Oper. Res. 247 732Google Scholar

    [25]

    Zhang J, Cho H, Mago P J, Zhang H G, Yang F B 2019 J. Therm. Sci. 28 1221Google Scholar

    [26]

    Xue B, Zhang M J, Browne W. N 2013 IEEE Trans. Cybern. 43 1656Google Scholar

    [27]

    吴小刚, 刘宗歧, 田立亭, 丁冬, 杨水丽 2014 电网技术 38 3405

    Wu X G, Liu Z Q, Tian L T, Ding D, Yang S L 2014 Power Syst. Technol. 38 3405

    [28]

    梁泽坤 2022 硕士学位论文(成都: 电子科技大学)

    Liang Z K 2022 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [29]

    谢朝辉 2024 硕士学位论文(绵阳: 西南科技大学)

    Xie Z H 2024 M. S. Thesis (Mianyang: Southwest University of Science and Technology

  • [1] Liu Tian-Le, Xu Xiao, Fu Bo-Wei, Xu Jia-Xin, Liu Jing-Yang, Zhou Xing-Yu, Wang Qin. Regression-decision-tree based parameter optimization of measurement-device-independent quantum key distribution. Acta Physica Sinica, 2023, 72(11): 110304. doi: 10.7498/aps.72.20230160
    [2] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Improved parameter optimization method for measurement device independent protocol. Acta Physica Sinica, 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [3] Liu Fu-Yan, Yan Bing. Applicability and optimization analysis of magnetic dipole array model. Acta Physica Sinica, 2022, 71(12): 124101. doi: 10.7498/aps.71.20212223
    [4] Li Xin-Peng, Cao Rui-Jie, Li Ming, Guo Ge-Pu, Li Yu-Zhi, Ma Qing-Yu. Super-resolution acoustic focusing based on the particle swarm optimization of super-oscillation. Acta Physica Sinica, 2022, 71(20): 204304. doi: 10.7498/aps.71.20220898
    [5] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [6] Li Ming-Fei, Yuan Zi-Hao, Liu Yuan-Xing, Deng Yi-Cheng, Wang Xue-Feng. Comparison between optimal configuration algorithms of fiber phased array. Acta Physica Sinica, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [7] Xing Hong-Yan, Zhang Qiang, Xu Wei. Hybrid algorithm for weak signal detection in chaotic sea clutter. Acta Physica Sinica, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [8] Liu Rui-Lan, Wang Xu-Liang, Tang Chao. Identification for hole transporting properties of NPB based on particle swarm optimization algorithm. Acta Physica Sinica, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [9] Yin Rong-Rong, Liu Bin, Liu Hao-Ran, Li Ya-Qian. Dynamic fault-tolerance analysis of scale-free topology in wireless sensor networks. Acta Physica Sinica, 2014, 63(11): 110205. doi: 10.7498/aps.63.110205
    [10] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [11] Chen Han-Ying, Gao Pu-Zhen, Tan Si-Chao, Fu Xue-Kuan. Prediction method of flow instability based on multi-objective optimized extreme learning machine. Acta Physica Sinica, 2014, 63(20): 200505. doi: 10.7498/aps.63.200505
    [12] Dong Jian-Jun, Deng Bo, Cao Zhu-Rong, Jiang Shao-En. Deduction of temperature and density spatial profile for implosion core by multi-objective optimization. Acta Physica Sinica, 2014, 63(12): 125209. doi: 10.7498/aps.63.125209
    [13] Chen Ying, Wang Wen-Yue, Yu Na. Improvement of the filtering performance of a heterostructure photonic crystal ring resonator using PSO algorithm. Acta Physica Sinica, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [14] Liu Tun-Dong, Chen Jun-Ren, Hong Wu-Peng, Shao Gui-Fang, Wang Ting-Na, Zheng Ji-Wen, Wen Yu-Hua. Particle swarm optimization investigation of stable structures of Pt-Pd alloy nanoparticles. Acta Physica Sinica, 2013, 62(19): 193601. doi: 10.7498/aps.62.193601
    [15] Zheng Shi-Lian, Yang Xiao-Niu. Parameter adaptation in green cognitive radio. Acta Physica Sinica, 2012, 61(14): 148402. doi: 10.7498/aps.61.148402
    [16] Long Wen, Jiao Jian-Jun, Long Zu-Qiang. Control of chaos solely based on PSO-LSSVM without usiing an analytical model. Acta Physica Sinica, 2011, 60(11): 110506. doi: 10.7498/aps.60.110506
    [17] Li Hong-Qi, Guo Wei-Dong, Sun Guo-Dong, Zhang Yao-Cun. Using conditional nonlinear optimal perturbation method in parameter optimization of land surface processes model. Acta Physica Sinica, 2011, 60(1): 019201. doi: 10.7498/aps.60.019201
    [18] Wang Xiao-Feng, Xue Hong-Jun, Si Shou-Kui, Yao Yue-Ting. Mixture control of chaotic system using particle swarm optimization algorithms and OGY method. Acta Physica Sinica, 2009, 58(6): 3729-3733. doi: 10.7498/aps.58.3729
    [19] Zhao Zhi-Jin, Xu Shi-Yu, Zheng Shi-Lian, Yang Xiao-Niu. Cognitive radio decision engine based on binary particle swarm optimization. Acta Physica Sinica, 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [20] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Cui Jin-Hui, Ju You-Lun. Laser parameter optimization and experimental study of end-pumped continuous wave Tm,Ho∶YLF lasers. Acta Physica Sinica, 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
Metrics
  • Abstract views:  516
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2024
  • Accepted Date:  31 December 2024
  • Available Online:  13 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回