Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Finite element prediction and device performance of piezoelectric fiber composite based smart sensor

GAO Yukun ZHAO Jie ZHOU Jingjing ZHOU Jing

Citation:

Finite element prediction and device performance of piezoelectric fiber composite based smart sensor

GAO Yukun, ZHAO Jie, ZHOU Jingjing, ZHOU Jing
cstr: 32037.14.aps.74.20241379
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Macro fiber composite (MFC) is extensively utilized in aviation, aerospace, civilian, and military domains due to its high piezoelectricity, flexibility, and minimal loss. Nevertheless, existing research on MFC sensors has focused on material applications, with a conspicuous lack of systematic investigation into the simulation and modeling of MFC sensor devices. In this study, three models, namely, a representative volume element (RVE) model, a direct model, and a Hybrid model are established to analyze the finite element models of MFC, covering the scales from micro to macro. On the one hand, the equivalent RVE model contributes to an understanding of the internal electric field distribution in MFC, thereby establishing a theoretical foundation for force-electric coupling. On the other hand, the application of the direct model and hybrid model accords with the boundary conditions in MFC applications, which lays a theoretical foundation for the stress sensing and resonance sensing mechanisms of MFC. These models constitute effective tools for predicting the sensing performance of MFC smart element sensors. The simulation outcomes indicate that resonant sensors exhibit significantly superior performance compared with patch sensors. Under the conditions where the excitation acceleration is 5 m/s² and the cantilever substrate length is 80 mm, the simulated resonant frequency of the MFC resonant sensor is 67 Hz, with an output voltage of 4.17 V. Experimental results confirm these findings. It is reported that the resonant frequency is 74 Hz and the output voltage is 3.59 V for the MFC sensor. The remarkable consistency between the simulation results and experimental data of the MFC sensor deserves to be emphasized. In addition, the MFC sensor shows excellent sensing sensitivity at low frequencies, with a sensitivity of 7.35 V/g. Obviously, MFC shows remarkable sensing characteristics at low-frequency resonance. The three finite element models established in this work can well predict the sensing performance of MFC sensors, thus ensuring reliable prediction of the performance of such sensors.
      Corresponding author: ZHOU Jingjing, 202401001@fynu.edu.cn ; ZHOU Jing, zhoujing@whut.edu.cn
    • Funds: Project supported by the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Education Institutes Open Program, China (Grant No. FMDI202407), the Key Program of Fuyang Normal University Youth Talent Fund, China (Grant No. rcxm202402), and the Natural Science Foundation Innovation Research Team of Hainan Province, China (Grant No. 524CXTD431).
    [1]

    Hagood N W, Bent A A 1993 34th Structures, Structural Dynamics and Materials Conference La Jolla, CA, U.S.A, April 19–22, 1993

    [2]

    Aaron A B, Nesbitt W H 1997 J. Intell. Mater. Syst. Struct. 8 903Google Scholar

    [3]

    Bent A A, Hagood N W, Rodgers J P 1995 J. Intell. Mater. Syst. Struct. 6 338Google Scholar

    [4]

    Wilkie W K, Bryant R G, High J W, Fox R L, Hellbaum R F 2000 Industrial and Commercial Applications of Smart Structures Technologies Newport Beach, USA, March 7–9, 2000

    [5]

    Tu J W, Zhang J R, Li Z, Gao K, Liu M Y 2020 Smart Mater. Struct. 29 015038Google Scholar

    [6]

    Lou J Q, Chen T H, Yang Y L, Xu C, Chen H, Ma J, Cui Y G, Li G 2022 J. Vib. Control 28 290Google Scholar

    [7]

    Lou J Q, Gu T, Chen T H, Yang Y L, Xu C, Wei Y D, Cui Y G 2022 Mech. Syst. Signal Process. 170 108824Google Scholar

    [8]

    Zhou J J, Zhou J, Chen W, Tian J, Shen J, Zhang P C 2022 Compos. Struct. 299 116019Google Scholar

    [9]

    Wang X Y, Yuan X, Wu M L, Gao F, Yan X M, Zhou K C, Zhang D 2019 Sensors 19 1809Google Scholar

    [10]

    Yan M Y, Yuan X, Zhang Y, Zhang S F, Wang X Y, Gao F, Zhou K C, Zhang D 2019 Smart Mater. Struct. 28 125015Google Scholar

    [11]

    Yuan X, Wang X Y, Yan M Y, Gao F, Zhang S F, Zhou K C, Ji X B, Zhang D 2020 Measurement 154 107500Google Scholar

    [12]

    Zhou J J, Zhou J, Yu Y Y, Shen J, Zhang P C, Chen W 2023 Ceram. Intl. 49 32528Google Scholar

    [13]

    Huang R, Zhou J J, Shen J, Tian J, Zhou J, Chen W 2024 Materials 17 3033Google Scholar

    [14]

    Discalea F L, Matt H, Bartoli I, Stefano C, Gyuhae P, Charles F 2006 J. Intell. Mater. Syst. Struct. 18 373

    [15]

    Konka H P, Wahaba M A, Lian K 2013 Sens. Actuators A 194 84Google Scholar

    [16]

    Pearson M R, Eaton M J, Featherston C A, Holford K M, Pullin R 2011 J. Phys.: Conf. Ser. 305 12049Google Scholar

    [17]

    Grzybek D, Micek P 2017 Sens. Actuators A 267 417Google Scholar

    [18]

    Micek P, Grzybek D 2019 Sens. Actuators A 301 111744

    [19]

    El Najjar J, Mustapha S 2020 J. Civ. Struct. Health Monit. 10 793Google Scholar

    [20]

    Glouia Y, Chaabouni Y, El Oudiani A, Maatoug I, Msahli S 2019 Intl. J. Adv. Manuf. Tech. 103 4671Google Scholar

    [21]

    Malekimoghadam R, Icardi U 2019 Composites Part B 177 107405Google Scholar

    [22]

    Marino M, Wriggers P 2019 Comput. Methods Appl. Mech. Eng. 344 938Google Scholar

    [23]

    Yu S, Zhang D T, Qian K 2019 Appl. Composite Mater. 26 65Google Scholar

    [24]

    Zahid M, Sharma R, Bhagat A R, Abbas S, Kumar A, Mahajan P 2019 Composite Struct. 226 111221Google Scholar

  • 图 1  (a)宏压电纤维复合材料结构; (b)压电纤维复合材料工作模式

    Figure 1.  (a) Macro fiber composite structure; (b) working mode of macro fiber composite.

    图 2  MFC理论分析建模图

    Figure 2.  MFC Model diagram of theoretical analysis.

    图 3  MFC的代表性体积元建模 (a) RVE模型; (b) RVE模型的尺寸参数

    Figure 3.  Representative volume element modeling of MFC: (a) RVE modeling diagram; (b) dimension parameter of RVE.

    图 4  MFC的电场分布图

    Figure 4.  Electric field distribution of MFC.

    图 5  (a) MFC的直接模型; (b) MFC的混合模型

    Figure 5.  (a) Direct model of MFC; (b) mixed model of MFC.

    图 6  MFC传感器 (a)贴片式传感器; (b)共振式传感器

    Figure 6.  MFC sensor: (a) MFC patch sensor; (b) MFC resonance sensor.

    图 7  MFC贴片式传感器传感效果

    Figure 7.  Sensing performance of MFC patch sensor.

    图 8  MFC共振传感器的传感性能 (a)加速度载荷对输出电压的影响; (b)基板长度对输出电压的影响

    Figure 8.  Sensing performance of MFC resonant sensor: (a) Influence of acceleration load on output voltage; (b) influence of substrate length on output voltage.

    图 9  MFC共振式传感器的频率和电压变化

    Figure 9.  Frequency and voltage variation of MFC resonant sensor.

    图 10  PZT-5H基MFC传感器性能 (a)频率响应; (b)加速度响应

    Figure 10.  Performance of the PZT-5H-based MFC sensor: (a) Frequency response; (b) acceleration response.

    图 11  MFC传感器仿真与实验结果对比

    Figure 11.  Comparison of simulation and experiment results of MFC sensor.

    表 1  MFC代表性体积元模型尺寸参数

    Table 1.  Dimension parameter of RVE of MFC.

    建模参数 纤维宽度 纤维高度 环氧
    宽度
    环氧
    高度
    电极宽度 电极高度 电极间距 纤维电极间距
    定义符号 Wf Hf We He Wi Hi Si Sf
    初始值/mm 0.35 0.45 0.3 0.45 0.1 0.04 0.5 0.04
    DownLoad: CSV

    表 2  压电陶瓷的材料参数

    Table 2.  Material parameters of piezoelectric ceramic.

    密度/(kg·m–3) 压电常数/(10–12 C·N–1) 介电常数 柔度矩阵/(10–12 m2·N–1)
    ρ d33 d31 d15 $\varepsilon_{11 }$ $\varepsilon_{33} $ s11 s12 s13 s33 s44 s66
    7750 593 –274 741 3130 3400 16.5 –4.8 –8.5 20.7 43.5 42.6
    DownLoad: CSV

    表 3  环氧树脂和叉指电极的材料参数

    Table 3.  Material parameters of epoxy resin and interdigital electrode.

    材料 密度/
    (kg·m–3)
    弹性
    模量/GPa
    泊松比 相对介电
    常数
    铜电极 8960 120 0.34
    环氧树脂 1960 1 0.38 4
    DownLoad: CSV

    表 4  MFC传感器性能参数

    Table 4.  Performance parameters of MFC sensor.

    性能参数单位数值范围
    灵敏度(±5%)V/g0.5—7.35
    工作频段(±5%)Hz1—200
    谐振频率Hz74
    响应时间ms<1
    输出电压V0.5—20
    DownLoad: CSV
  • [1]

    Hagood N W, Bent A A 1993 34th Structures, Structural Dynamics and Materials Conference La Jolla, CA, U.S.A, April 19–22, 1993

    [2]

    Aaron A B, Nesbitt W H 1997 J. Intell. Mater. Syst. Struct. 8 903Google Scholar

    [3]

    Bent A A, Hagood N W, Rodgers J P 1995 J. Intell. Mater. Syst. Struct. 6 338Google Scholar

    [4]

    Wilkie W K, Bryant R G, High J W, Fox R L, Hellbaum R F 2000 Industrial and Commercial Applications of Smart Structures Technologies Newport Beach, USA, March 7–9, 2000

    [5]

    Tu J W, Zhang J R, Li Z, Gao K, Liu M Y 2020 Smart Mater. Struct. 29 015038Google Scholar

    [6]

    Lou J Q, Chen T H, Yang Y L, Xu C, Chen H, Ma J, Cui Y G, Li G 2022 J. Vib. Control 28 290Google Scholar

    [7]

    Lou J Q, Gu T, Chen T H, Yang Y L, Xu C, Wei Y D, Cui Y G 2022 Mech. Syst. Signal Process. 170 108824Google Scholar

    [8]

    Zhou J J, Zhou J, Chen W, Tian J, Shen J, Zhang P C 2022 Compos. Struct. 299 116019Google Scholar

    [9]

    Wang X Y, Yuan X, Wu M L, Gao F, Yan X M, Zhou K C, Zhang D 2019 Sensors 19 1809Google Scholar

    [10]

    Yan M Y, Yuan X, Zhang Y, Zhang S F, Wang X Y, Gao F, Zhou K C, Zhang D 2019 Smart Mater. Struct. 28 125015Google Scholar

    [11]

    Yuan X, Wang X Y, Yan M Y, Gao F, Zhang S F, Zhou K C, Ji X B, Zhang D 2020 Measurement 154 107500Google Scholar

    [12]

    Zhou J J, Zhou J, Yu Y Y, Shen J, Zhang P C, Chen W 2023 Ceram. Intl. 49 32528Google Scholar

    [13]

    Huang R, Zhou J J, Shen J, Tian J, Zhou J, Chen W 2024 Materials 17 3033Google Scholar

    [14]

    Discalea F L, Matt H, Bartoli I, Stefano C, Gyuhae P, Charles F 2006 J. Intell. Mater. Syst. Struct. 18 373

    [15]

    Konka H P, Wahaba M A, Lian K 2013 Sens. Actuators A 194 84Google Scholar

    [16]

    Pearson M R, Eaton M J, Featherston C A, Holford K M, Pullin R 2011 J. Phys.: Conf. Ser. 305 12049Google Scholar

    [17]

    Grzybek D, Micek P 2017 Sens. Actuators A 267 417Google Scholar

    [18]

    Micek P, Grzybek D 2019 Sens. Actuators A 301 111744

    [19]

    El Najjar J, Mustapha S 2020 J. Civ. Struct. Health Monit. 10 793Google Scholar

    [20]

    Glouia Y, Chaabouni Y, El Oudiani A, Maatoug I, Msahli S 2019 Intl. J. Adv. Manuf. Tech. 103 4671Google Scholar

    [21]

    Malekimoghadam R, Icardi U 2019 Composites Part B 177 107405Google Scholar

    [22]

    Marino M, Wriggers P 2019 Comput. Methods Appl. Mech. Eng. 344 938Google Scholar

    [23]

    Yu S, Zhang D T, Qian K 2019 Appl. Composite Mater. 26 65Google Scholar

    [24]

    Zahid M, Sharma R, Bhagat A R, Abbas S, Kumar A, Mahajan P 2019 Composite Struct. 226 111221Google Scholar

Metrics
  • Abstract views:  2227
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  30 September 2024
  • Accepted Date:  30 November 2024
  • Available Online:  02 January 2025
  • Published Online:  05 March 2025
  • /

    返回文章
    返回