Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis and experimental investigation of the temperature property of sensors based on symmetrical metal-cladding optical waveguide

Luo Xue-Xue Chen Jia-Bi Hu Jin-Bing Liang Bin-Ming Jiang Qiang

Citation:

Analysis and experimental investigation of the temperature property of sensors based on symmetrical metal-cladding optical waveguide

Luo Xue-Xue, Chen Jia-Bi, Hu Jin-Bing, Liang Bin-Ming, Jiang Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Symmetrical metal-cladding waveguide (SMCW) is a kind of new waveguide construction, and it consists of a planar glass slab sandwiched in two metal films with different thicknesses. The metal in this structure is usually a noble metal, such as Au, Ag and Cu etc. One of the characteristics of the glass is the sub-millimeter thickness, which is useful for exciting the ultrahigh order mode. Since the SMCW structure was proposed, it has received much attention from the researchers for its excellent characteristics of free-space coupling technique and ultrahigh order mode excitation. This free-space coupling technology has a higher sensitivity compared with the end-face coupling, prism coupling and grating coupling techniques. The ultrahigh order mode is very sensitive to the incident light wavelength, the thickness of guiding layer and the refractive index, but not sensitive to polarization. Based on the thermal-optical effect and thermal expansion effect of metal film and guiding layer materials, we research the temperature property of the SMCW structure. Researching methods include simulation analysis and experimental demonstration. First, we calculate the relation of the thickness and dielectric property of metal films, and the thickness and refractive index of the guiding layer with the temperature. Results show that these four factors are nearly proportional to the temperature difference. Then, we simulate the relationship of the reflectivity of the SMCW structure with those four factors by means of single-factor investigation under spectral and angular interrogation mode of operation, and find that the temperature-dependence of thickness of the guiding layer makes the chief contribution to the waveguide function of SMCW. Meanwhile, we analyze the sensitivity of the sensors based on SMCW structure, and the result shows that the sensitivity of this kind of sensor can be up to 21.89 pm/K (spectral mode) and 1.449×10-3 rad/K (angular mode). Finally, we demonstrate the simulation results by experiment. In our experiment, a series of reflectivity is measured at temperatures varying from 320 to 380 K, and the value is expressed in the form of voltage output of PSD (position sensitive diode). The sensor shows a good linearity and a high average resolution of 0.517×10-3 rad/K; furthermore, we fit the experimental data and get the linear function between angle shifts and temperature difference of Δθ = 0.02965×ΔT. So, once the temperature has any minute variation, it will easily give a change in the resonance incident angle and show the effect of sensor. Owing to the advantages of high sensitivity, low cast and easy fabrication, the temperature sensor based on SMCW will be a promising sensor in many fields.
      Corresponding author: Chen Jia-Bi, jbchenk@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104184, 61308096), the National Basic Research Program of China (Grant No. 2011CB707504), and the National Science Foundation for Young Scholars of China (Grant No.61308096).
    [1]

    Lin Y, Lu F, Tu Y, Ren Z 2007 Nano Lett. 4 191

    [2]

    Bornhop D J, Latham J C, Kussrow A, Markov D A 2007 Science 317 1732

    [3]

    McDonagh C, Burke C S, MacCraith B D 2008 Chemical Reviews 108 400

    [4]

    Huang C J, Dostalek J, Sessitsch A, Knoll W 2011 Analytical Chemistry 83 674

    [5]

    Homola J 1997 Sensors and Actuators B: Chemical 41 207

    [6]

    Guo Q L, Goodman D W 2001 Chin. Phys. B 10 80

    [7]

    Zhi Feng Z, Xiao Ming T 2013 Photonics Technology Letter. 25 310

    [8]

    Li H G, Cao Z Q, Lu H, Shen Q 2003 Appl. Phys. Lett. 83 2757

    [9]

    Lu H, Cao Z, Li H, Shen Q 2004 Appl. Phys. Lett. 85 4579

    [10]

    Feng Y J, Cao Z Q, Chen L, Shen Q S 2006 Acta Phys. Sin. 55 4709 (in Chinese) [冯耀军, 曹庄琪, 陈麟, 沈启舜 2006 物理学报 55 4709]

    [11]

    Chen F, Hao J, Li H G, Cao Z Q 2011 Acta Phys. Sin. 60 074223 (in Chinese) [陈凡, 郝军, 李红根, 曹庄琪 2011 物理学报 60 074223]

    [12]

    Xiao P P 2012 Ph. D. Dissertation(Shanghai: Shanghai Jiao Tong University) (in Chinese) [肖平平 2012 博士学位论文 (上海: 上海交通大学)]

    [13]

    Cao ZH Q, Lu H F, Li H G 2006 Acta. Opt. Sin. 26 497 (in Chinese) [曹庄琪, 陆海峰, 李红根 2006 光学学报 26 497]

    [14]

    Chen L, Zhu Y M, Zhang D W 2009 Chin. Phys. B 18 4875

    [15]

    Chen G, Cao Z, Gu J, Shen Q 2006 Appl. Phys. Lett. 89 081120

    [16]

    Chen F 2005 Opt Express 13 10061

    [17]

    Li H G, Cao Z, Lu H, Shen Q 2006 Chin. Phys. Lett. 23 643

    [18]

    Wang X P, Cheng Y, Sun J J, Li H G, Cao ZH Q 2013 Opt Express 21 13380

    [19]

    Chen L, Zhu Y, Peng Y, Zhuang S 2010 Journal of Optics. 12 075002

    [20]

    Vial A, Grimault A S, Macías D, Barchiesi D, de la Chapelle M L 2005 Phys. Rev. B 71 085416

    [21]

    Sharma A K, Gupta B D 2006 Appl Optics. 45 151

    [22]

    Kai-Qun L 2007 Chin. Phys. Lett. 24 3081

    [23]

    Holzapfel W B, Hartwig M, Sievers W 2001 J. Phys. Chem. Ref. Data 30 515

  • [1]

    Lin Y, Lu F, Tu Y, Ren Z 2007 Nano Lett. 4 191

    [2]

    Bornhop D J, Latham J C, Kussrow A, Markov D A 2007 Science 317 1732

    [3]

    McDonagh C, Burke C S, MacCraith B D 2008 Chemical Reviews 108 400

    [4]

    Huang C J, Dostalek J, Sessitsch A, Knoll W 2011 Analytical Chemistry 83 674

    [5]

    Homola J 1997 Sensors and Actuators B: Chemical 41 207

    [6]

    Guo Q L, Goodman D W 2001 Chin. Phys. B 10 80

    [7]

    Zhi Feng Z, Xiao Ming T 2013 Photonics Technology Letter. 25 310

    [8]

    Li H G, Cao Z Q, Lu H, Shen Q 2003 Appl. Phys. Lett. 83 2757

    [9]

    Lu H, Cao Z, Li H, Shen Q 2004 Appl. Phys. Lett. 85 4579

    [10]

    Feng Y J, Cao Z Q, Chen L, Shen Q S 2006 Acta Phys. Sin. 55 4709 (in Chinese) [冯耀军, 曹庄琪, 陈麟, 沈启舜 2006 物理学报 55 4709]

    [11]

    Chen F, Hao J, Li H G, Cao Z Q 2011 Acta Phys. Sin. 60 074223 (in Chinese) [陈凡, 郝军, 李红根, 曹庄琪 2011 物理学报 60 074223]

    [12]

    Xiao P P 2012 Ph. D. Dissertation(Shanghai: Shanghai Jiao Tong University) (in Chinese) [肖平平 2012 博士学位论文 (上海: 上海交通大学)]

    [13]

    Cao ZH Q, Lu H F, Li H G 2006 Acta. Opt. Sin. 26 497 (in Chinese) [曹庄琪, 陆海峰, 李红根 2006 光学学报 26 497]

    [14]

    Chen L, Zhu Y M, Zhang D W 2009 Chin. Phys. B 18 4875

    [15]

    Chen G, Cao Z, Gu J, Shen Q 2006 Appl. Phys. Lett. 89 081120

    [16]

    Chen F 2005 Opt Express 13 10061

    [17]

    Li H G, Cao Z, Lu H, Shen Q 2006 Chin. Phys. Lett. 23 643

    [18]

    Wang X P, Cheng Y, Sun J J, Li H G, Cao ZH Q 2013 Opt Express 21 13380

    [19]

    Chen L, Zhu Y, Peng Y, Zhuang S 2010 Journal of Optics. 12 075002

    [20]

    Vial A, Grimault A S, Macías D, Barchiesi D, de la Chapelle M L 2005 Phys. Rev. B 71 085416

    [21]

    Sharma A K, Gupta B D 2006 Appl Optics. 45 151

    [22]

    Kai-Qun L 2007 Chin. Phys. Lett. 24 3081

    [23]

    Holzapfel W B, Hartwig M, Sievers W 2001 J. Phys. Chem. Ref. Data 30 515

  • [1] Jian Chao-Chao, Ma Xiang-Chao, Zhao Zi-Han, Zhang Jian-Qi. Temperature dependence of MXenes plasmons induced hot carrier generation and transport. Acta Physica Sinica, 2024, 73(11): 117801. doi: 10.7498/aps.73.20231924
    [2] Zhang Yu-Qi, Wang Jun-Jie, Lü Zi-Yu, Han Su-Ting. Multimode modulated memristors for in-sensor computing system. Acta Physica Sinica, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [3] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [4] Wang Kun, Duan Gao-Yan, Lang Pei-Lin, Zhao Yu-Fang, Liu Jian-Bin, Song Gang. Biosensor based on plasmonic Mach-Zehnder interferometer with metallic gratings. Acta Physica Sinica, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [5] Ding Zi-Ping, Liao Jian-Fei, Zeng Ze-Kai. A new type of ultra-broadband microstructured fiber sensor based on surface plasmon resonance. Acta Physica Sinica, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [6] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [7] Long Ze, Xia Xiao-Chuan, Shi Jian-Jun, Liu Jun, Geng Xin-Lei, Zhang He-Zhi, Liang Hong-Wei. Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal. Acta Physica Sinica, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [8] Liu Zhi-Fu, Li Pei, Cheng Tie-Dong, Huang Wen. NO2 sensing properties of porous Fe-doped indium oxide. Acta Physica Sinica, 2020, 69(24): 248101. doi: 10.7498/aps.69.20200956
    [9] Fang Long, Chen Guo-Ding. Temperature charateristics of droplet impacting on static hot pool. Acta Physica Sinica, 2019, 68(23): 234702. doi: 10.7498/aps.68.20190809
    [10] Luo Yi, Wang Xiao-Lin, Zhang Han-Wei, Su Rong-Tao, Ma Peng-Fei, Zhou Pu, Jiang Zong-Fu. Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [11] Liu Peng, Liao Lei, Chu Ying-Bo, Wang Yi-Bo, Hu Xiong-Wei, Peng Jing-Gang, Li Jin-Yan, Dai Neng-Li. Irradiation and temperature influence on the Bi-doped silica fiber. Acta Physica Sinica, 2015, 64(22): 224220. doi: 10.7498/aps.64.224220
    [12] Wang Jia-Lu, Du Mu-Qing, Zhang Ling-Li, Liu Yong-Jun, Sun Wei-Min. Transmission characteristics of photonic crystal fibers based on filling different kinds of liquid crystals. Acta Physica Sinica, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [13] Sun Jie, Yang Jian-Feng, Yan Su, Yang Jing-Jing, Huang Ming. Transmission characteristics and potential applications of plasmon-assisted parallel-plated waveguide. Acta Physica Sinica, 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [14] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [15] Zhang Yu-Jie, Zhang Wan-Rong, Jin Dong-Yue, Chen Liang, Fu Qiang, Guo Zhen-Jie, Xing Guang-Hui, Lu Zhi-Yi. Effects of Ge profile on thermal characteristics of SiGe heterojunction bipolar transistor with non-uniform doping profile in base region. Acta Physica Sinica, 2013, 62(3): 034401. doi: 10.7498/aps.62.034401
    [16] Zhu Hua-Bing, Wu Zheng-Bin, Liu Guo-Qiang, Xi Kui, Li Shan-Shan, Dong Yang-Yang. Study of quartz temperature characteristics for precise oscillator applications. Acta Physica Sinica, 2013, 62(1): 014205. doi: 10.7498/aps.62.014205
    [17] Hasi Wu-Li-Ji, Li Xing, Guo Xiang-Yu, Lu Huan-Huan, Lü Zhi-Wei, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing. Investigation on stimulated Brillouin scattering medium——perfluoropolyether at high and low temperatures. Acta Physica Sinica, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [18] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [19] Liu Lin-Jie, Yue Yuan-Zheng, Zhang Jin-Cheng, Ma Xiao-Hua, Dong Zuo-Dian, Hao Yue. Temperature characteristics of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric. Acta Physica Sinica, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [20] Zhu Ming-Gang, Pan Wei, Li Wei. . Acta Physica Sinica, 2002, 51(7): 1608-1611. doi: 10.7498/aps.51.1608
Metrics
  • Abstract views:  6110
  • PDF Downloads:  223
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2015
  • Accepted Date:  21 July 2015
  • Published Online:  05 December 2015

/

返回文章
返回