-
A high-stability dual-frequency laser source is a key technology for achieving national ultra-precision measurement capabilities and also serves as the foundation for supporting the quality of high-end equipment manufacturing. This paper builds a high-stability dual-frequency laser source and its frequency difference stability evaluation system based on a double acousto-optic modulation scheme. By researching the mechanism of generating dual-frequency laser based on double acousto-optic modulation, a degradation model of frequency difference stability was gradually constructed, with targeted technical improvements implemented. The study shows that the frequency stability of the dual-frequency laser source and the stability of the frequency difference both affect the accuracy of heterodyne interference measurement. The frequency difference stability is determined by factors such as the stability of RF signal and the nonlinear distortion of the power amplifier. This study first optimizes the frequency difference stability to 7.5×10-10@1s and 1.2×10-9@1000s by designing a high-order harmonic filtering technique. Then, the DG 4202 RF generator is replaced with a rubidium-clock-based high-stability RF signal generator, further optimizing the frequency difference stability to 9×10-11@1s and 6×10-10@1000s. The impact of dual-frequency frequency difference stability on heterodyne interference measurement accuracy is reduced to the sub-femtometer level. And the frequency difference stability of the dual-frequency laser source fully meet the application requirements for picometer-level laser interference measurement. Combined with the most advanced frequency stabilization technology using ultra-stable cavity, our high-stability dual-frequency laser source can support heterodyne interference measurement with picometer or even femtometer-level accuracy, demonstrating significant application potential in fields such as ultra-precision measurements.
-
Keywords:
- Dual-frequency laser /
- Frequency difference stability /
- Heterodyne interference measurement
-
[1] Suo R, Fan Z J, Li Y, Zhang S L 2004LASER& INFRARED 34 251253(in Chinese) [所睿,范志军,李岩,张书练2004激光与红外34 251253]
[2] Karsten D, Albrecht R 2003Class. Quantum Grav. 20 S1
[3] Hough J, Robertson D, Ward H, McNamara P, LISA Science Team 2003Adv. Space Res. 32 12471250
[4] Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022Acta Phys. Sin. 71212219(in Chinese) [李庆回,李卫,孙瑜,王雅君,田龙,陈力荣,张鹏飞,郑耀辉2022物理学报71 212219]
[5] Wang Z Y, Wang J H, Li Y H, Liu Q 2023Acta Phys. Sin. 72 240246(in Chinese) [王在渊,王洁浩,李宇航,柳强2023物理学报72 240246]
[6] Wang J, Qi K, Wang S, Gao R, Li P, Yang R, Liu H, Luo Z 2024Sci. Sin. Phys. Mech. Astron. 54 109127(in Chinese) [王娟,齐克奇,王少鑫,高瑞弘,李磐,杨然,刘河山,罗子人2024中国科学:物理学力学天文学54 109127]
[7] Li Z K, Zhang Z H, Lu Y F, Bai Y, Xu J X, Hu P C, Liu Y M, You Q, Wang D W, He Q, Tan J B 2018Acta Phys. Sin. 67 160601(in Chinese) [李正坤,张钟华,鲁云峰,白洋,许金鑫,胡鹏程,刘永猛,由强,王大伟,贺青,谭久彬2018物理学报67 160601]
[8] Le T R, Mu H L, Xu X, Tan Y D, Wei H Y, Li Y 2023Acta Phys. Sin. 72 149501(in Chinese) [乐陶然,穆衡霖,徐欣,谈宜东,尉昊赟,李岩2023物理学报72 149501]
[9] Chen H, Li L X, Li R G, Yu G D, Chen Q 2023 Electron. 12 4960.
[10] Cao L B 2008Infrared Laser Eng. 37 200202(in Chinese) [曹利波2008红外与激光工程37 200202]
[11] Li L, Yuan L, Wang L, Zhang R, Wu Y P, Wang X Y 2021Chin. J. Aeronaut. 34 191209
[12] Lee A Y, Yu J W, Kahn P B, Stoller R L 2002IEEE Trans. Aerosp. Electron. Syst.38 502-514
[13] Andrew Y, Marco P, Gian B P, Ulrich K, Jens F, Petr K, Antti L, Santeri S, Ramiz H, Mehmet C, Michael M, Anton N 2009 Nanotrace: the investigation of non-linearity in optical interferometers using X-ray interferometry
[14] State Council of the People's Republic of China, Development Plan for Metrology (2013–2020) 2013 Gazette of the State Council of the People's Republic of China9 613(in Chinese)[中华人民共和国国务院,计量发展规划(2013–2020) 2013中华人民共和国国务院公报9 613]
[15] Dai Y, Zhang W X, Kong X X, Shen Y Y, Xu H, Zhang X Q 2024Acta Phys. Sin.73 084206(in Chinese)[戴玉,张文喜,孔新新,沈杨翊,徐豪,张晓强2024物理学报73 084206]
[16] Yang H X, Fu H J, Hu P C, Yang R T, Xing X, Yu L, Chang D, Tan J B 2022Laser Optoelectron. Prog. 59 305319(in Chinese) [杨宏兴,付海金,胡鹏程,杨睿韬,邢旭,于亮,常笛,谭久彬2022激光与光电子学进展59 305319]
[17] Qi C Y 2019 M.S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [祁春雨2019硕士学位论文(哈尔滨:哈尔滨工业大学)]
[18] Zhang S L 2023Acta Opt. Sin. 43 189198(in Chinese) [张书练2023光学学报43 189198]
[19] Cheng L R, Wang T, An B N, He Z Y, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2026J. Quantum Opt.32 030201(in Chinese)陈力荣,王韬,安炳南,贺子洋,赵琴,武延鹏,李林,王雅君,郑耀辉2026量子光学学报32 030201
[20] Xu G J, Jiao D D, Zhang L B, Gao J, Liu J, Fan L, Chen L, Dong R F, Liu T, Zhang S G 2021J. Time Freq. 44 244254(in Chinese) [许冠军,焦东东,张林波,高静,刘军,范乐,陈龙,董瑞芳,刘涛,张首刚2021时间频率学报44 244254]
[21] Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zhen Y H 2025J. Quantum Opt. 31 040201(in Chinese) [刘骏杨,韩逸凡,陈力荣,赵琴,武延鹏,李林,王雅君,郑耀辉2025量子光学学报31 040201]
[22] Cheng J D, Li T, Zhou C Y, Wang L K, Fang S, Sun G W, Geng J X, Hong Y, Hou X, Chen W B. 2024Chin. J. Lasers 51 350362(in Chinese) [陈迪俊,李唐,周翠芸,汪凌珂,方苏,孙广伟,耿建新,洪毅,侯霞,陈卫标2024中国激光51 350362]
[23] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, U. Sterr 2017Phys. Rev. Lett. 118 263202
[24] Yang H X, Yin Z X, Yang R T, Hu P C, Li J, Tan J B 2020Sensors 20 1083
[25] Köchert P, Weichert C, Flügge J, Wurmus J, Manske E 2014Proceedings of the 58th ILMENAU SCIENTIFIC COLLOQUIUM September 8—12,2014 p068
[26] AA Opto-Electronic,“Do you know Acousto-optics ?” rue de Versailles F-78470 Saint-Rémy-lès-Chevreuse Tél.: 33(0)130528717- Fax: 33(0)130527803- www.a-a.fr
[27] Kazimierczuk, Marian K 2015 RF Power Amplifiers (Hoboken: wiley) pp65-166
[28] Li R X, Jiao N J, An B N, Wang Y J, Li W, Chen L R, Tian L, Zheng Y H 2024Opt. Laser Technol. 174 110617
[29] Jiao N J, Li R X, An B N, W J W, Chen L R, Wang Y J, Zheng Y H 2024Opt. Lett.49, 35683571
Metrics
- Abstract views: 337
- PDF Downloads: 30
- Cited By: 0