Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental Study on The Packing Structure of "Hexapod" Concave Particles under Tapping based on X-Ray Tomography

LUO Rudan ZENG Zhikun GE Zhuan JIANG Yonglun WANG Yujie

Citation:

Experimental Study on The Packing Structure of "Hexapod" Concave Particles under Tapping based on X-Ray Tomography

LUO Rudan, ZENG Zhikun, GE Zhuan, JIANG Yonglun, WANG Yujie
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Granular materials are ubiquitous in nature and industrial production. Investigating the structure of packing is crucial for understanding the physical properties of granular materials. Owing to their symmetry and simple geometry, spherical particles have long served as an ideal model for studying granular packing, yielding numerous research outcomes.
    In recent years, the influence of particle shape on packing structures has drawn considerable attention. Non-spherical particles, characterized by complex shapes, tend to interlock and form stable structures. Their significant geometric cohesion notably affects the stability and porosity of granular packing.
    To investigate the structural evolution and compaction mechanisms of three-dimensional concave particles (hexapod-shaped) under external tapping, focusing on the role of geometric cohesion in enhancing mechanical stability. We employed hexapod-shaped particles that are composed of three mutually orthogonal spherocylinders in this study. The granular system subject to consecutive tapping can reach a stationary state. During the densification process of the system, packing structures with different volume fractions will be formed. Meanwhile, by combining with X-ray tomography, we can obtain the microstructure.
    The findings reveal that the volume fraction of “hexapod” particle packing is significantly lower compared to that of hard-sphere systems. Consistent with hard-sphere systems, the compaction curves of “hexapod” particles across varying tapping intensities are accurately described by the Kohlrausch–Williams–Watt (KWW) law, suggesting a relaxation process governed by heterogeneous modes. Furthermore, both the volume fraction of the steady-state granular packing and the average contact number exhibit an inverse relationship with tapping intensity, increasing as the intensity decreases. A detailed statistical analysis of contact points indicates that the compaction process of “hexapod” particles is predominantly influenced by two factors: the augmentation in the number of neighboring contacting particles and the modification of contact forms. These factors collectively enhance the degree of interlocking among hexapods within the system. Specifically, the compaction process is primarily propelled by the escalation in neighboring contacts and the refinement of contact types, particularly the increase in cylinder-cylinder (cc) contacts. This rise in cc contacts significantly bolsters mechanical stability through enhanced geometric interlocking.
    This study reveals the structural evolution characteristics of non-spherical particles during the compaction process and provide important experimental support for understanding the unique mechanical and dynamic properties of concave particle packing. This research not only enrich the experimental data on granular packing structures but also offer a new perspective for exploring the universal laws of packing for particles of different shapes. Through this study, we aim to provide a more solid foundation for the theoretical research and industrial applications of granular materials, promoting technological progress and innovation in related fields.
  • [1]

    Jaeger H M, Nagel S R 1992 Science 255 1523

    [2]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [3]

    Nedderman R M 1992Statics and Kinematics of Granular Materials (Cambridge: Cambridge University Press)

    [4]

    Bernal J D, Mason J 1960 Nature 188 910

    [5]

    Scott G D 1960 Nature 188 908

    [6]

    Tang J J, Wen X H, Zhang Z, Wang Y J 2025 Phys. Rev. E 111 015420

    [7]

    Briscoe C, Song C, Wang P, Makse H A 2008 Phys. Rev. Lett. 101 188001

    [8]

    Onoda G Y, Liniger E G 1990 Phys. Rev. Lett. 64 2727

    [9]

    Edwards S F, Oakeshott R B S 1989 Physica A 157 1080

    [10]

    Zeng Z K, Zhang S Y, Zheng X, Xia C J, Kob W, Yuan Y, Wang Y J 2022 Phys. Rev. Lett. 129 228004

    [11]

    Baule A, Morone F, Herrmann H J, Makse H A 2018 Rev. Mod. Phys. 90 015006

    [12]

    Yuan Y, Xing Y, Zheng J, Li Z F, Yuan H F, Zhang S Y, Zeng Z K, Xia C J, Tong H, Kob W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 127 018002

    [13]

    Nowak E R, Knight J B, Ben-Naim E, Jaeger H M, Nagel S R 1998 Phys. Rev. E 57 1971

    [14]

    Xing Y, Yuan Y, Yuan H F, Zhang S Y, Zeng Z K, Zheng X, Xia C J, Wang Y J 2024 Nat. Phys. 20 646

    [15]

    Philippe P, Bideau D 2002 Europhys. Lett. 60 677

    [16]

    Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 126 048002

    [17]

    Richard P, Nicodemi M, Delannay R, Ribière P, Bideau D 2005 Nat. Mater. 4 121

    [18]

    Schröter M, Goldman D I, Swinney H L 2005 Phys. Rev. E 71 030301

    [19]

    Pica Ciamarra M, Coniglio A, Nicodemi M 2006 Phys. Rev. Lett. 97 158001

    [20]

    Yuan Y, Zeng Z K, Xing Y, Yuan H F, Zhang S Y, Kob W, Wang Y J 2024 Nat. Commun. 15 3866

    [21]

    Wang W, Barés J, Renouf M, Azéma E 2024 arXiv:2403.07555[cond-mat.soft]

    [22]

    Conzelmann N A, Partl M N, Clemens F J, Müller C R, Poulikakos L D 2022 Powder Technol. 397 117019

    [23]

    McKeown N B, Budd P M 2010 Macromolecules 43 5163

    [24]

    Malinouskaya I, Mourzenko V, Thovert J-F, Adler P 2009 Phys. Rev. E 80 011304

    [25]

    Man W, Donev A, Stillinger F H, Sullivan M T, Russel W B, Heeger D, Inati S, Torquato S, Chaikin P M 2005 Phys. Rev. Lett. 94 198001

    [26]

    Tran T D, Nezamabadi S, Bayle J P, Amarsid L, Radjai F 2024 Soft Matter 20 3411

    [27]

    Aponte D, Barés J, Renouf M, Azéma E, Estrada N 2025 Granular Matter 27 27

    [28]

    Lu H W, Hou J H 2024International Association for Shell and Spatial Structures (IASS) Zurich Switzerland, August 26-30

    [29]

    Xing Y, Qiu Y P, Wang Z, Ye J C, Li X T 2017 Chin. Phys. B 26 084503

    [30]

    Franklin S V 2014 Europhys. Lett. 106 58004

    [31]

    Murphy K A, Reiser N, Choksy D, Singer C E, Jaeger H M 2016 Granular Matter 18 26

    [32]

    Zhao Y C, Liu K, Zheng M, Barés J, Dierichs K, Menges A, Behringer R P 2016 Granular Matter. 18 24

    [33]

    Franklin S V 2012 Physics Today 65 70

    [34]

    Gravish N, I. Goldman D 2016Fluids, Colloids and Soft Materials pp341-354

    [35]

    Zhao Y C, Barés J, Socolar J E S 2020 Phys. Rev. E 101 062903

    [36]

    Govender N, Wilke D N, Wu C Y, Khinast J, Pizette P, Xu W J 2018 Chem. Eng. Sci. 188 34

    [37]

    Roth L K, Jaeger H M 2016 Soft Matter 12 1107

    [38]

    Zhang S Y, Zeng Z K, Yuan H F, Li Z F, Wang Y J 2024 Commun. Phys. 7 202

    [39]

    Egres R G, Wagner N J 2005 J. Rheol. 49 719

    [40]

    Dierichs K, Menges A 2016 Granular Matter 18 25

    [41]

    Dierichs K, Menges A 2021 Bioinspiration & Biomimetics 16 065010

    [42]

    Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409

    [43]

    Cao Y X, Li J D, Kou B Q, Xia C J, Li Z F, Chen R C, Xie H L, Xiao T Q, Kob W, Hong L, Zhang J, Wang Y J 2018 Nat. Commun. 9 2911

    [44]

    Aste T, Saadatfar M, Senden T J 2005 Phys. Rev. E 71 061302

  • [1] LIU Zelin, YUAN Houfei, ZENG Zhikun, GE Zhuan, JIANG Yonglun, WANG Yujie. Structural Study of Binary Hard-sphere Packing under Tapping. Acta Physica Sinica, doi: 10.7498/aps.74.20250232
    [2] Jiang Yi-Min, Liu Mario. A thermodynamic model of grain-grain contact force. Acta Physica Sinica, doi: 10.7498/aps.67.20171441
    [3] Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng. STXM observation and quantitative study of magnetic vortex structure. Acta Physica Sinica, doi: 10.7498/aps.64.197502
    [4] Si Li-Na, Wang Xiao-Li. A molecular dynamics study on adhesive contact processes of surfaces with nanogrooves. Acta Physica Sinica, doi: 10.7498/aps.63.234601
    [5] Wang Chen, An Hong-Hai, Wang Wei, Fang Zhi-Heng, Jia Guo, Meng Xiang-Fu, Sun Jin-Ren, Liu Zheng-Kun, Fu Shao-Jun, Qiao Xiu-Mei, Zheng Wu-Di, Wang Shi-Ji. Diagnoses of Au plasma with soft X-ray double frequency grating interference technique. Acta Physica Sinica, doi: 10.7498/aps.63.125210
    [6] Yang Xiao-Jing, Fang Cong-Cong. Multi-scale analysis of nanoscale contact process between spherical indenter and single crystal aluminium. Acta Physica Sinica, doi: 10.7498/aps.62.180702
    [7] Zhang Pin, Liang Yan-Mei, Chang Sheng-Jiang, Fan Hai-Lun. Kidney segmentation in computed tomography sequences based on energy minimization. Acta Physica Sinica, doi: 10.7498/aps.62.208701
    [8] Duan Fang-Li, Wang Guang-Jian, Qiu He-Bing. Variation of adhesive force in the nanoscale contact. Acta Physica Sinica, doi: 10.7498/aps.61.046801
    [9] Guan Jun-Wei, He Duan-Wei, Wang Hai-Kuo, Peng Fang, Xu Chao, Wang Wen-Dan, Wang Kai-Xue, He Kai. Influence of mechanical configuration and hardness of last stage anvil on high pressure producing efficiency for octahedral cell. Acta Physica Sinica, doi: 10.7498/aps.61.100701
    [10] Ma Tian-Peng, Hu Li-Qun, Chen Kai-Yun. Study of central plasma structure using soft X-ray signals. Acta Physica Sinica, doi: 10.7498/aps.58.1110
    [11] Hu Guo-Qi, Tu Hong-En, Hou Mei-Ying. Energy dissipation during cooling process in granular gas under gravity. Acta Physica Sinica, doi: 10.7498/aps.58.341
    [12] Miao Tian-De, Yi Chen-Hong, Qi Yan-Li, Mu Qing-Song, Liu Yuan. Force transmission in three-dimensional hexagonal-close-packed granular arrays submitted to a point load. Acta Physica Sinica, doi: 10.7498/aps.56.4713
    [13] Zhang Yun. Polaron fluorescence and tomograpy of Ti:LiNbO3 waveguide. Acta Physica Sinica, doi: 10.7498/aps.56.280
    [14] Zheng Li-Jing, Li Shu-Suo, Li Huan-Xi, Chen Chang-Qi, Han Ya-Fang, Dong Bao-Zhong. Small angle x-ray scattering study on microstructure and mechanical property evo lutions of equal-channel angular pressed 7050 Al alloy. Acta Physica Sinica, doi: 10.7498/aps.54.1665
    [15] Zhou Bing-Qing, Liu Feng-Zhen, Zhu Mei-Fang, Gu Jin-Hua, Zhou Yu-Qin, Liu Jin-Long, Dong Bao-Zhong, Li Guo-Hua, Ding Kun. The microstructure of hydrogenated microcrystalline silicon thin films studied by small-angle x-ray scattering. Acta Physica Sinica, doi: 10.7498/aps.54.2172
    [16] Zhao Hui, Du Zhi-Wei, Zhou Tie-Tao, Liu Pei-Ying, Dong Bao-Zhong, Chen Chang-Qi. Small angle x-ray scattering study on microstructure evolution of the aging process of Al-Zn-Mg-Cu-Li alloy. Acta Physica Sinica, doi: 10.7498/aps.53.1251
    [17] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, doi: 10.7498/aps.49.2389
    [18] LUO YUAN-SU, ZAO JI-LIANG, HUANG SHENG-TAO. AN INVESTIGATION ON THE STRUCTURE OF GLASSY METALS BY X-RAY DIFFRACTION METHOD. Acta Physica Sinica, doi: 10.7498/aps.31.1256
    [19] . Acta Physica Sinica, doi: 10.7498/aps.24.301
    [20] LIU SHU-I. LONG RANGE AND SHORT RANGE FRICTIONAL SLIP-LINES ON PLANE CONTACT SURFACE IN PLASTIC COMPRESSION (THE RULE OF ISOCLINIC GRADIENT). Acta Physica Sinica, doi: 10.7498/aps.14.9
Metrics
  • Abstract views:  45
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  10 May 2025

/

返回文章
返回