Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A machine learning approach to correct imaging distortions in swept-source optical coherence tomography

MA Cui CHEN Peizhe YANG Lu HAN Tao TANG Yun CHEN Changyong DING Zhihua

Citation:

A machine learning approach to correct imaging distortions in swept-source optical coherence tomography

MA Cui, CHEN Peizhe, YANG Lu, HAN Tao, TANG Yun, CHEN Changyong, DING Zhihua
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The inevitable distortions in optical coherence tomography (OCT) imaging often lead to mismatches between the imaging space and the real space, significantly affecting measurement accuracy. To address this issue, this study proposes a machine learning-based OCT image distortion correction method. A calibration plate with uniformly distributed circular hole arrays is sequentially imaged at different marked planes. The point showing minimal deviation between its coordinates and the mean coordinates in all imaging planes is selected as a reference marker. A mathematical model is then used to reconstruct all marker point coordinates in the reference plane, establishing a mapping relationship between the imaging space of calibration plate and the real physical space. A multilayer perceptron (MLP) is employed to learn this mapping relationship. The network architecture consists of multiple fully-connected modules, each with a linear layer and an activation function besides the output layer. The optimal model is selected based on validation set performance, and then used to analyze the spatial distribution of points. Using a swept-source OCT system, lens images are acquired and corrected through the trained model to obtain the anterior surface point cloud. Combined with ray tracing reconstruction of the posterior surface, the lens curvature radius and central thickness are calculated. The experimental results show that after correction, the lens curvature radius is measured with an accuracy of 10 μm (error < 1%), while the central thickness is determined, with an accuracy of 3 μm (relative error: 0.3%). This method shows high accuracy and reliability, providing an effective solution for improving OCT measurement accuracy.
  • 图 1  基于标定板的OCT成像畸变校正

    Figure 1.  Distortion correction of OCT imaging using a calibration plate.

    图 2  基于MLP网络的映射关系拟合

    Figure 2.  Fitting of mapping relationship based on MLP network.

    图 3  扫频 OCT 系统

    Figure 3.  SS-OCT system.

    图 4  成像空间中标记点及其坐标的确定流程 (a)标定板横断面图; (b) “圆孔”区域与背景区域的划分; (c)分割模板; (d)基于“圆孔”区域质心的标记点分布图

    Figure 4.  Process for the determination of marker points and their coordinates in the imaging space: (a) Cross-sectional view of the calibration plate; (b) division of the “circular hole” regions from the background; (c) segmentation template; (d) distribution map of marker points by centroids of the “circular hole” regions.

    图 5  标记点点云分布 (a)成像空间单层点云分布; (b)真实空间单层点云分布; (c)成像空间全部点云分布; (d)真实空间全部点云分布

    Figure 5.  Distribution of marker point clouds: (a) Single-layer point cloud distribution in imaging space; (b) single-layer point cloud distribution in real space; (c) overall point cloud distribution in imaging space; (d) overall point cloud distribution in real space.

    图 6  模型校正与真实点轴向残差与未校正对应真实点轴向残差分布图 (a), (d), (g)未校正点$P$与对应真实空间点$\hat P$坐标的X, Y, Z轴向残差; (b), (e), (h)线性回归模型的校正点$P'$与对应真实空间点$\hat P$坐标的X, Y, Z轴向残差; (c), (f), (i)本文校正模型的校正点$P'$与对应真实空间点$\hat P$坐标的X, Y, Z轴向残差

    Figure 6.  Comparison of axial residuals between model-corrected data and true points versus uncorrected data and true points, along with their distribution plots: (a), (d), (g) Axial residuals (X/Y/Z) between uncorrected point $P$ and the ground-truth spatial point $\hat P$; (b), (e), (h) axial residuals (X/Y/Z) between the linear regression-corrected point $P'$ and the ground-truth spatial point $\hat P$; (c), (f), (i) axial residuals (X/Y/Z) between the proposed model-corrected point $P'$ and the ground-truth spatial point $\hat P$.

    图 7  3种透镜第一面校正前后点云分布 (a)平凸透镜校正前; (b)平凸透镜校正后; (c)双凸透镜校正前; (d)双凸透镜校正后; (e)双凹透镜校正前; (f)双凹透镜校正后

    Figure 7.  Point cloud distribution of the first surface of three types of lenses before and after correction: (a) Plano-convex lens before correction; (b) plano-convex lens after correction; (c) biconvex lens before correction; (d) biconvex lens after correction; (e) biconcave lens before correction; (f) biconcave lens after correction.

    表 1  不同回归模型畸变校正效果

    Table 1.  Distortion correction performance of different regression models.

    偏差值/μm$\Delta x$$\Delta y$$\Delta z$$\Delta s$
    线性回归11.9218.689.8540.45
    K近邻6.8928.1341.5976.6
    随机森林19.1614.3699.12132.64
    XGBoost6.6845.1954.18106.05
    本文方法3.492.676.9413.11
    DownLoad: CSV

    表 2  平凸透镜矫正前后参数测量结果对比

    Table 2.  Comparison of parameter measurement results for plano-convex lens before and after correction.

    平凸透镜 R1 R2 d
    校正前/mm 129.05 (45.71%/54.84%) 1.334 (0.054%/4.2%)
    校正后/mm 83.33 (0.01%/0.01%) 1.288 (0.008%/0.6%)
    名义标准值/mm –83.34 1.28
    DownLoad: CSV

    表 4  双凹透镜矫正前后参数测量结果对比

    Table 4.  Comparison of parameter measurement results for biconcave lens before and after correction.

    双凹透镜 R1 R2 d
    校正前/mm 29.87 (4.77%/19.0%) 18.93 (6.17%/24.6%) 0.927 (0.023%/2.4%)
    校正后/mm 25.17 (0.07%/0.2%) 24.94 (0.16%/0.6%) 0.947 (0.003%/0.3%)
    名义标准值/mm 25.10 –25.10 0.95
    DownLoad: CSV

    表 3  双凸透镜矫正前后参数测量结果对比

    Table 3.  Comparison of parameter measurement results for biconvex lens before and after correction.

    双凸透镜 R1 R2 d
    校正前/mm 30.56 (6.01%/24.5%) 31.38 (6.83%/27.8%) 1.958 (0.48%/2.5%)
    校正后/mm 24.58 (0.03%/0.1%) 24.73 (0.18%/0.7%) 1.918 (0.008%/0.4%)
    名义标准值/mm –24.55 24.55 1.91
    DownLoad: CSV
  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178Google Scholar

    [2]

    Tomlins P H, Wang R K 2005 J. Phys. D Appl. Phys. 38 2519Google Scholar

    [3]

    丁宇韬, 张君, 郭遥, 陈昊 2024 激光与光电子学进展 61 247

    Ding Y T, Zhang J, Guo Y, Chen H 2024 Laser Optoelectron. Prog. 61 247

    [4]

    Volker W, Andrew R, Sunita R, Joseph I 2002 Opt. Express 10 397Google Scholar

    [5]

    Diaz J, Rahlves M, Majdani O, Reithmeier E, Ortmaier T 2012 Optical Metrology and Inspection for Industrial Applications II Beijing, China, November 5-7, 2012 p8563J

    [6]

    Yao J, Anderson A, Rolland J P 2018 Opt. Express 26 10242Google Scholar

    [7]

    江祥奎, 范永青, 王婉 2014 计算机科学与探索 8 1254Google Scholar

    Jiang X Q, Fan Y Q, Wang W 2014 J. Front. Comput. Sci. Technol 8 1254Google Scholar

    [8]

    齐召帅, 王昭, 黄军辉, 薛琦, 高建民 2016 光子学报 45 87

    Qi Z S, Wang Z, Huang J H, Xue Q, Gao J M 2016 Acta Photonica Sin. 45 87

    [9]

    Lecun Y, Bottou L, Bengio Y, Haffner P 1998 Proc. IEEE 86 2278Google Scholar

    [10]

    Li X Y, Zhang B, Sander P V, Liao J 2019 Computer Vision and Pattern Recognition Long Beach, CA, USA, June 15–20, 2019 p4850

    [11]

    Yang S R, Lin C Y, Liao K, Zhang C J, Zhao Y 2021 arXiv: 2103.16026v2 [cs. CV]

    [12]

    徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014209Google Scholar

    Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209Google Scholar

    [13]

    周静, 张晓芳, 赵延庚 2021 物理学报 70 054201Google Scholar

    Zhou J, Zhang X F, Zhao Y G 2021 Acta Phys. Sin. 70 054201Google Scholar

    [14]

    Shukla S, Vishwakarma C, Sah A N, Ahirwar S, Pandey K, Pradhan A 2023 Appl. Opt. 62 6826Google Scholar

    [15]

    Breiman L, 2001 Mach. Learn. 45 5Google Scholar

    [16]

    谢探阳, 李玉梅, 张涛, 高天亮, 石玉超 2023 组合机床与自动化加工技术 2 37

    Xie T Y, Li Y M, Zhang T, Gao T L, Shi Y C 2023 Mod. Mach. Tool Autom. Manuf. Tech. 2 37

    [17]

    Kato D, Maeda N, Hirogaki T, Aoyama E, Takahashi K 2021 21st International Conference on Control, Automation and Systems Jeju, Korea, October 12–15, 2021 p607

    [18]

    Werbos P J 1981 System Modeling and Optimization Berlin, Germany, July 20–24, 1981 p762

    [19]

    Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533Google Scholar

    [20]

    王艳丽, 张宁, 张祥宇, 许益彰, 王密 2025 光学学报 45 3

    Wang Y L, Zhang N, Zhang X Y, Xu Y Z, Wang M 2025 Acta Opt. Sin. 45 3

    [21]

    Singarimbun R N, Nababan E B, Sitompul O S 2019 International Conference of Computer Science and Information Technology Medan, Indonesia, November 28–29, 2019 p1

    [22]

    Cotter A, Shamir O, Srebro N, Sridharan K 2011 Advances in Neural Information Processing Systems Granada, Spain, December 12–15, 2011 p1647

    [23]

    Fitzgibbon A, Pilu M, Fisher R B 1999 IEEE Trans. Pattern Anal. Mach. Intell. 21 476Google Scholar

  • [1] GUO Yan, LYU Heng, DING Chunling, YUAN Chenzhi, JIN Ruibo. Machine learning identification of fractional-order vortex beam diffraction process. Acta Physica Sinica, doi: 10.7498/aps.74.20241458
    [2] ZHANG Tong, WANG Jiahao, TIAN Shuai, SUN Xuran, LI Ri. Machine learning-based study of dynamic shrinkage behavior during solidification of castings. Acta Physica Sinica, doi: 10.7498/aps.74.20241581
    [3] GAO Mengqin, ZHANG Huiying, SUN Bin, LIU Kaiyuan, DU Chixin, LI Peng. Near-infrared band I retinal oximetry guided by optical coherence tomography angiography. Acta Physica Sinica, doi: 10.7498/aps.74.20241686
    [4] WANG Peng, MAIMAITINIYAZI Maimaitiabudula. Quantum dynamics of machine learning. Acta Physica Sinica, doi: 10.7498/aps.74.20240999
    [5] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, doi: 10.7498/aps.73.20240747
    [6] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, doi: 10.7498/aps.73.20231618
    [7] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, doi: 10.7498/aps.72.20230896
    [8] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, doi: 10.7498/aps.72.20230334
    [9] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, doi: 10.7498/aps.72.20231624
    [10] Ying Da-Wei, Zhang Si-Hui, Deng Shu-Jin, Wu Hai-Bin. Single shot imaging for cold atoms based on machine learning. Acta Physica Sinica, doi: 10.7498/aps.72.20230449
    [11] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, doi: 10.7498/aps.71.20211632
    [12] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, doi: 10.7498/aps.70.20210831
    [13] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, doi: 10.7498/aps.70.20210879
    [14] Wu Tong, Huo Wen-Qi, Huang Yun-Zhi, Wang Ji-Ming, Gu Xiao-Rong, Lu Yuan-Gang, He Chong-Jun, Liu You-Wen. A miniaturized pre-calibration based Lissajous scanning fiber probe for endoscopic optical coherence tomography. Acta Physica Sinica, doi: 10.7498/aps.70.20210151
    [15] Zhang Yao, Zhang Yun-Bo, Chen Li. Deep-learning-assisted micro impurity detection on an optical surface. Acta Physica Sinica, doi: 10.7498/aps.70.20210403
    [16] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, doi: 10.7498/aps.68.20190942
    [17] Hu Zhe-Hao, Shangguan Zi-Wei, Qiu Jian-Rong, Yang Shan-Shan, Bao Wen, Shen Yi, Li Peng, Ding Zhi-Hua. Stimulated-emission based spectral domain optical coherence tomography for molecular contrast imaging. Acta Physica Sinica, doi: 10.7498/aps.67.20171738
    [18] Tang Tao, Zhao Chen, Chen Zhi-Yan, Li Peng, Ding Zhi-Hua. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials. Acta Physica Sinica, doi: 10.7498/aps.64.174201
    [19] Zhao Chen, Chen Zhi-Yan, Ding Zhi-Hua, Li Peng, Shen Yi, Ni Yang. Line-field parallel spectral domain optical coherence tomography and its application in defect inspection. Acta Physica Sinica, doi: 10.7498/aps.63.194201
    [20] Shang Zai-Ming, Ding Zhi-Hua, Wang Ling, Liu Yong. Path length coded coherence combination for three-dimensional superresolution. Acta Physica Sinica, doi: 10.7498/aps.60.124204
Metrics
  • Abstract views:  356
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2025
  • Accepted Date:  05 June 2025
  • Available Online:  01 July 2025
  • /

    返回文章
    返回