Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Backscattered light field control based on self-adaptive genetic algorithm

DUAN Meigang ZHANG Chenlong ZHAO Ying WANG Jianmin ZUO Haoyi

Citation:

Backscattered light field control based on self-adaptive genetic algorithm

DUAN Meigang, ZHANG Chenlong, ZHAO Ying, WANG Jianmin, ZUO Haoyi
cstr: 32037.14.aps.74.20250455
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Modulating the light field scattered by scattering media has potential applications in biological tissue imaging, military anti-terrorism, and optical information transmission. However, light reflected by complex scattering media, such as biological tissues, clouds and fog, multi-mode fiber, and white paper, will produce disorderly scattering, and then disturb the wavefront of incident light. It has always been the main obstacle to optical imaging and effective information transmission. Therefore, the control of backscattered light field is also a research field worthy of attention, which is of great significance for the transmission of non-line-of-sight optical information. It is also very important to find a method of efficiently controlling backscattered light field for the breakthrough of related applications. It has been found that iterative wavefront shaping technology is an effective solution, which gradually modulates the amplitude or phase distribution of wavefront according to the feedback of the light intensity distribution in the target area of charge coupled device (CCD). An improved genetic algorithm, self-adaptation genetic algorithm (SAGA), is proposed, which can be used to rapidly modulate the backscattered light field. The amplitude distribution of wavefront is controlled, which makes it form the required pattern at the target position through the interference of light. During the implementation of the algorithm, the SAGA performs gene crossover and mutation separately, and selects gene crossover and mutation operations according to the number of iterations. At the beginning of evolution, the probability of selecting gene mutations is higher because the population needs to adapt to the environment, while at the end of evolution, the probability of selecting gene mutations is lower because it gradually adapts to the environment. In the experimental measurement, the effective modulation area of digital-micromirror device (DMD) is 1024×1024, which is divided into 64×64 modulation segments by pixel merging. Each segment number is assigned a value of 0 or 1. Focusing and image projection performance of scattered light field are evaluated based on peak-to-background ratio (PBR) and Pearson correlation coefficient (Cor), respectively. By comparing the scattered light focusing and image projection of SAGA and genetic algorithm (GA), it is found that SAGA can accurately control the backscattered light field and converge to the optimal value in a few iterations. After 1000 iterations, the GA still has a clear speckle background. With the increase of iteration times, GA will also show bright focus and clear projection image. Compared with GA, SAGA has a modulation speed that is 8.3 times faster in light focusing and 14.38 times faster in image projection, greatly improving the modulation speed of the scattered light field. The fast control technology for scattered light field can lead to numerous new optical communication applications and offer fresh insights into the study of optics and information science.
      Corresponding author: DUAN Meigang, duanmg.sxu@foxmail.com ; ZUO Haoyi, zuohaoyi@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62475176), the Fundamental Research Program of Shanxi Province, China (Grant No. 202403021212259), the Science and Technology Innovation Plan of Colleges and Universities in Shanxi Province, China (Grant No. 2024L215), and the Project of Award Fund for Excellent Doctoral Work in Shanxi Province, China (Grant No. 20242077).
    [1]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photonics 2 110Google Scholar

    [2]

    Ni F, Liu H, Zheng Y, Chen X 2023 Adv. Photonics 5 046010

    [3]

    Bian Y, Wang F, Wang Y, Fu Z, Liu H, Yuan H, Situ G 2024 Photonics Res. 12 134Google Scholar

    [4]

    段美刚, 赵映, 左浩毅 2024 物理学报 73 124203Google Scholar

    Duan M G, Zhao Y, Zuo H Y 2024 Acta Phys. Sin. 73 124203Google Scholar

    [5]

    Zhang X, Gao J, Gan Y, Song C, Zhang D, Zhuang S, Han S, Lai P, Liu H 2023 PhotoniX 4 10Google Scholar

    [6]

    Mclntosh R, Goetschy A, Bender N, Yamilov A, Hsu C, Yılmaz H, Cao H 2024 Nat. Photonics 18 744Google Scholar

    [7]

    Wu C, Liu J, Huang X, Li Z P, Yu C, Ye J T, Zhang J, Zhang Q, Dou X, Goyal V K, Xu F, Pan J W 2021 Nat. Photonics 118 e2024468118

    [8]

    孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 物理学报 70 224203Google Scholar

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar

    [9]

    张熙程, 方龙杰, 庞霖 2018 物理学报 67 104202Google Scholar

    Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202Google Scholar

    [10]

    Ding C, Shao R, Qu Y, He Q, Liu L, Yang J 2023 Laser Photonics Rev. 17 2300104Google Scholar

    [11]

    相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏 2024 物理学报 73 124202Google Scholar

    Xiang M, He P, Wang T Y, Yuan L, Deng K, Liu F, Shao X P 2024 Acta Phys. Sin. 73 124202Google Scholar

    [12]

    Shi A D, Wang Z Y, Duan C X, Wang Z, Zhang W L 2024 Chin. Phys. B 33 104202Google Scholar

    [13]

    沈乐成, 罗嘉伟, 张志凌, 张诗按 2024 光学学报 44 1026016Google Scholar

    Shen Y C, Luo J W, Zhang Z L, Zhang S A 2024 Acta Opt. Sin. 44 1026016Google Scholar

    [14]

    朱磊, 邵晓鹏 2020 光学学报 40 0111005Google Scholar

    Zhu L, Shao X P 2020 Acta Opt. Sin. 40 0111005Google Scholar

    [15]

    Cao Z Z, Zhang X B, Osnabrugge G, Li J H, Vellekoop I M, Koonen A M 2019 Light-Sci. Appl. 8 69Google Scholar

    [16]

    Tzang O, Caravaca-Aguirre A M, Wagner K, Piestun R 2018 Nat. Photonics 12 368Google Scholar

    [17]

    Teğin U, Rahmani B, Kakkava E, Borhani N, Moser C, Psaltis D 2020 APL Photonics 5 030804Google Scholar

    [18]

    Qiao Y Q, Peng Y J, Zheng Y L, Ye F, Chen X 2018 Opt. Lett. 43 787Google Scholar

    [19]

    倪枫超, 刘海港, 陈险峰 2024 光学学报 44 1026006Google Scholar

    Ni F C, Liu H G, Chen X F 2024 Acta Opt. Sin. 44 1026006Google Scholar

    [20]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [21]

    Liu J, Feng Y, Li W, Xiang M, Xi T, Liu F, Li G, Shao X 2023 Opt. Lett. 48 4077Google Scholar

    [22]

    Wan L, Chen Z, Huang H, Pu J 2016 Appl. Phys. B 122 204

    [23]

    Peng T, Li R, An S, Yu X, Zhou M, Bai C, Liang Y, Lei M, Zhang G, Yao B, Zhang P 2019 Opt. Express 27 4858Google Scholar

    [24]

    Yang J, He Q, Liu L, Qu Y, Shao R, Song B, Zhao Y 2021 Light- Sci. Appl. 10 149Google Scholar

    [25]

    Wang X, Zhao W, Zhai A, Wang D 2023 Opt. Express 31 32287Google Scholar

    [26]

    Zhang C, Yao Z, Liu T, Sui X, Chen Q, Xie Z, Liu G 2024 Opt. Laser Technol. 169 110018Google Scholar

    [27]

    Woo C M, Zhao Q, Zhong T, Li H, Yu Z, Lai P 2022 APL Photonics 7 046109Google Scholar

    [28]

    Li W, He W, Dai Y, Zuo H, Pang L 2024 Opt. Laser Technol. 175 110740Google Scholar

    [29]

    Zhao Y, He Q, Li S, Yang J 2021 Opt. Lett. 46 1518Google Scholar

    [30]

    Li H H, Woo C M, Zhong T T, Yu Z P, Luo Y Q, Zheng Y J, Yang X, Hui H, Lai P X 2021 Photonics Res. 9 202Google Scholar

    [31]

    Yu H, Yao Z Y, Sui X B, Gu G H, Chen Q 2022 Optik 261 169129Google Scholar

    [32]

    Deb K, Beyer H G 2001 Evol. Comput. 9 197Google Scholar

    [33]

    Kivijärvi J, Fränti P, Nevalainen O 2003 J. Heuristics 9 113Google Scholar

    [34]

    Hinterding R, Michalewicz Z, Peachey T C 1996 International Conference on Evolutionary Computation—The 4th International Conference on Parallel Problem Solving from Nature, Berlin Germany, September 22–26, 1996 pp420–429

  • 图 1  背向散射光场调控原理图 (a)经散射介质反射的光场分布; (b)调制后的反射光场分布; (c) SAGA散射波前整形流程图

    Figure 1.  Schematics of modulation of backscattering field: (a) Distribution of light field reflected by scattering medium; (b) distribution of the reflected light field after modulation; (c) flowchart of SAGA.

    图 2  实验装置图

    Figure 2.  Experimental setup.

    图 3  SAGA和GA的背向散射聚焦实验结果 (a)迭代过程中的最佳聚焦模式; (b) 1000次迭代SAGA和GA的PBR值随迭代次数的变化; (c) 3000次迭代GA的PBR值随迭代次数的变化

    Figure 3.  Experimental results of backscatter focusing: (a) Optimal focusing mode in iterative process; (b) variation curve of PBR of SAGA and GA with 1000 iteration times; (c) variation curve of PBR of GA with 3000 iteration times.

    图 4  SAGA和GA的图像投影实验结果 (a)目标图像; (b) SAGA在1000次迭代过程中的最佳投影结果; (c) GA在1000次迭代过程中的最佳投影结果; (d) GA在5000次迭代过程中的最佳投影结果; (e) 1000次迭代SAGA和GA的Cor值随迭代次数的变化; (f) 5000次迭代GA的Cor值随迭代次数的变化

    Figure 4.  Experimental results of image projection: (a) Target images; (b) the optimal image projection of SAGA with 1000 iteration times; (c) the optimal image projection of GA with 1000 iteration times; (d) the optimal image projection of GA with 3000 iteration times; (e) variation curve of Cor of SAGA and GA with 1000 iteration times; (f) variation curve of Cor of GA with 5000 iteration times.

  • [1]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photonics 2 110Google Scholar

    [2]

    Ni F, Liu H, Zheng Y, Chen X 2023 Adv. Photonics 5 046010

    [3]

    Bian Y, Wang F, Wang Y, Fu Z, Liu H, Yuan H, Situ G 2024 Photonics Res. 12 134Google Scholar

    [4]

    段美刚, 赵映, 左浩毅 2024 物理学报 73 124203Google Scholar

    Duan M G, Zhao Y, Zuo H Y 2024 Acta Phys. Sin. 73 124203Google Scholar

    [5]

    Zhang X, Gao J, Gan Y, Song C, Zhang D, Zhuang S, Han S, Lai P, Liu H 2023 PhotoniX 4 10Google Scholar

    [6]

    Mclntosh R, Goetschy A, Bender N, Yamilov A, Hsu C, Yılmaz H, Cao H 2024 Nat. Photonics 18 744Google Scholar

    [7]

    Wu C, Liu J, Huang X, Li Z P, Yu C, Ye J T, Zhang J, Zhang Q, Dou X, Goyal V K, Xu F, Pan J W 2021 Nat. Photonics 118 e2024468118

    [8]

    孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 物理学报 70 224203Google Scholar

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar

    [9]

    张熙程, 方龙杰, 庞霖 2018 物理学报 67 104202Google Scholar

    Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202Google Scholar

    [10]

    Ding C, Shao R, Qu Y, He Q, Liu L, Yang J 2023 Laser Photonics Rev. 17 2300104Google Scholar

    [11]

    相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏 2024 物理学报 73 124202Google Scholar

    Xiang M, He P, Wang T Y, Yuan L, Deng K, Liu F, Shao X P 2024 Acta Phys. Sin. 73 124202Google Scholar

    [12]

    Shi A D, Wang Z Y, Duan C X, Wang Z, Zhang W L 2024 Chin. Phys. B 33 104202Google Scholar

    [13]

    沈乐成, 罗嘉伟, 张志凌, 张诗按 2024 光学学报 44 1026016Google Scholar

    Shen Y C, Luo J W, Zhang Z L, Zhang S A 2024 Acta Opt. Sin. 44 1026016Google Scholar

    [14]

    朱磊, 邵晓鹏 2020 光学学报 40 0111005Google Scholar

    Zhu L, Shao X P 2020 Acta Opt. Sin. 40 0111005Google Scholar

    [15]

    Cao Z Z, Zhang X B, Osnabrugge G, Li J H, Vellekoop I M, Koonen A M 2019 Light-Sci. Appl. 8 69Google Scholar

    [16]

    Tzang O, Caravaca-Aguirre A M, Wagner K, Piestun R 2018 Nat. Photonics 12 368Google Scholar

    [17]

    Teğin U, Rahmani B, Kakkava E, Borhani N, Moser C, Psaltis D 2020 APL Photonics 5 030804Google Scholar

    [18]

    Qiao Y Q, Peng Y J, Zheng Y L, Ye F, Chen X 2018 Opt. Lett. 43 787Google Scholar

    [19]

    倪枫超, 刘海港, 陈险峰 2024 光学学报 44 1026006Google Scholar

    Ni F C, Liu H G, Chen X F 2024 Acta Opt. Sin. 44 1026006Google Scholar

    [20]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [21]

    Liu J, Feng Y, Li W, Xiang M, Xi T, Liu F, Li G, Shao X 2023 Opt. Lett. 48 4077Google Scholar

    [22]

    Wan L, Chen Z, Huang H, Pu J 2016 Appl. Phys. B 122 204

    [23]

    Peng T, Li R, An S, Yu X, Zhou M, Bai C, Liang Y, Lei M, Zhang G, Yao B, Zhang P 2019 Opt. Express 27 4858Google Scholar

    [24]

    Yang J, He Q, Liu L, Qu Y, Shao R, Song B, Zhao Y 2021 Light- Sci. Appl. 10 149Google Scholar

    [25]

    Wang X, Zhao W, Zhai A, Wang D 2023 Opt. Express 31 32287Google Scholar

    [26]

    Zhang C, Yao Z, Liu T, Sui X, Chen Q, Xie Z, Liu G 2024 Opt. Laser Technol. 169 110018Google Scholar

    [27]

    Woo C M, Zhao Q, Zhong T, Li H, Yu Z, Lai P 2022 APL Photonics 7 046109Google Scholar

    [28]

    Li W, He W, Dai Y, Zuo H, Pang L 2024 Opt. Laser Technol. 175 110740Google Scholar

    [29]

    Zhao Y, He Q, Li S, Yang J 2021 Opt. Lett. 46 1518Google Scholar

    [30]

    Li H H, Woo C M, Zhong T T, Yu Z P, Luo Y Q, Zheng Y J, Yang X, Hui H, Lai P X 2021 Photonics Res. 9 202Google Scholar

    [31]

    Yu H, Yao Z Y, Sui X B, Gu G H, Chen Q 2022 Optik 261 169129Google Scholar

    [32]

    Deb K, Beyer H G 2001 Evol. Comput. 9 197Google Scholar

    [33]

    Kivijärvi J, Fränti P, Nevalainen O 2003 J. Heuristics 9 113Google Scholar

    [34]

    Hinterding R, Michalewicz Z, Peachey T C 1996 International Conference on Evolutionary Computation—The 4th International Conference on Parallel Problem Solving from Nature, Berlin Germany, September 22–26, 1996 pp420–429

  • [1] Duan Mei-Gang, Zhao Ying, Zuo Hao-Yi. Focusing scattering light field with different states based on iterative algorithm. Acta Physica Sinica, 2024, 73(12): 124203. doi: 10.7498/aps.73.20231991
    [2] Liao Yong-Quan, Zhang Xiao-Xue, Liu Hui, Zhu Xiang-Yu, Chen Xu-Dong, Lin Zhi-Li. Self-reference interferometric measurement of scattering medium transmission matrix based on digital micromirror device superpixel method. Acta Physica Sinica, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [3] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming. Effect of laser illumination conditions on focusing performance of super-oscillatory lens. Acta Physica Sinica, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] Zhang Ke-Jin, Liu Lei, Zeng Qing-Wei, Gao Tai-Chang, Hu Shuai, Chen Ming. Influence of different scattering medium on propagation characteristics to femtosecond laser pulses. Acta Physica Sinica, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [6] Zhang Xi-Cheng, Fang Long-Jie, Pang Lin. Transmission matrix optimization based on singular value decomposition in strong scattering process. Acta Physica Sinica, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [7] Zhang Hong-Bo, Zhang Xi-Ren. Coherence of digital phase conjugation for implementing time reversal in scattering media. Acta Physica Sinica, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [8] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [9] Zhang Cheng, Fang Long-Jie, Zhu Jian-Hua, Zuo Hao-Yi, Gao Fu-Hua, Pang Lin. Four-element division algorithm for focusing light through scattering medium. Acta Physica Sinica, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [10] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [11] Gu Wen-Hao, Chang Sheng-Jiang, Fan Fei, Zhang Xuan-Zhou. InSb based subwavelength array for terahertz wave focusing. Acta Physica Sinica, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [12] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [13] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [14] Chen Zhi, Xu Liang, Chen Rong-Chang, Du Guo-Hao, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao. Focusing performance of hard X-ray single Kinoform lens. Acta Physica Sinica, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [15] Wang Zheng, Gao Chun-Qing, Xin Jing-Tao. Focusing properties of the high order vector beam by a high numerical aperture lens. Acta Physica Sinica, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [16] Zhan Xiang-Lin, Sun Fang, Zeng Zhou-Mo, Wang Xiao-Yuan, Jin Shi-Jiu. Acoustic field characteristics of ultrasonic linear phased array for an interface condition. Acta Physica Sinica, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [17] Yu Yong-Jiang, Chen Jian-Nong, Yan Jin-Liang, Wang Fei-Fei. Longitudinally polarized subwavelength beam generated by focusing radially modulated Bessel-Gaussian beam. Acta Physica Sinica, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [18] Li Min, Zhang Zhi-You, Shi Sha, Du Jing-Lei. Optimization and analysis of the structural parameters of subwavelength metal focusing lens. Acta Physica Sinica, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [19] Zhou Fei, Ding Tian-Huai. Influential factors and analysis of detecting buried trash in scattering media. Acta Physica Sinica, 2010, 59(12): 8451-8458. doi: 10.7498/aps.59.8451
    [20] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
Metrics
  • Abstract views:  439
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2025
  • Accepted Date:  16 May 2025
  • Available Online:  18 June 2025
  • Published Online:  20 August 2025
  • /

    返回文章
    返回