Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Control of cross-scale f structural order of Heusler alloy Co2FeAlxSi1–x and its influence on magnetostrictive properties

YAO Liang LU Guanghui DU Jie LIU Yong-Chang XI Xuekui WANG Wenhong

Citation:

Control of cross-scale f structural order of Heusler alloy Co2FeAlxSi1–x and its influence on magnetostrictive properties

YAO Liang, LU Guanghui, DU Jie, LIU Yong-Chang, XI Xuekui, WANG Wenhong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Co-based Heusler alloys have emerged as highly promising systems within the Heusler alloy family due to their high Curie temperatures and potential half-metallicity. Since the concept of half-metallic ferromagnets is proposed, these alloys have attracted significant attention because of their high spin polarization, excellent magnetic performance, and thermal stability. The existing studies predominantly focus on spin-transport properties, but systematic studies on their magnetostriction remain scarce. The electronic structure and magnetism of Co-based Heusler alloys are critically dependent on atomic-site ordering: their spin polarization, Curie temperature, and magnetocrystalline anisotropy are closely related to crystal structure, such as L21 and B2. A highly ordered L21 structure is essential for maintaining half-metallicity, as structural disorder can induce significant changes in electronic hybridization and exchange interactions, thereby significantly changing macroscopic magnetism. Additionally, ordering control is also expected to modulate magnetostriction by modifying lattice symmetry and local distortions. Notably, in Fe–Ga alloys, disorder engineering has been employed to induce local short-range order and lattice distortion, thereby enhancing magnetostriction, a mechanism that may similarly operate in Co-based systems. However, the higher lattice symmetry and stronger orbital hybridization in these alloys can lead to fundamentally distinct mechanisms, which needs to be validated experimentally. This study focuses on the Co2FeAlxSi1–x system to systematically probe the relationship between composition-driven structural evolution (i.e., L21 to B2 transition) and magnetostrictive performance through adjusting Al/Si ratio. The study aims to clarify the correlation between composition-induced structural evolution and magnetostrictive behavior, thereby revealing the regulatory role of atomic ordering in magnetoelastic coupling and providing theoretical insight for designing high-performance magnetostrictive materials.The correlation between atomic site ordering and magnetostriction in Heusler alloy Co2FeAlxSi1–x (x = 0, 0.25, 0.5, 0.75, 1) is systematically investigated in experiment. The results reveal that Al doping drives a structural transition from the highly ordered L21 phase to the disordered B2 phase, inducing a coexisting L21/B2 interface state at x = 0.25–0.5, with the calculated ordering parameters SL21/SB2 ranging from 0.5 to 0.9. The experimental data demonstrate that this interface state significantly enhances the saturation magnetostriction coefficient (λs), which subsequently decreases as it further transitions to the B2-dominated structure. These findings quantitatively clarify the physical mechanism by which local atomic disorder enhances magnetoelastic coupling through reducing cubic symmetry, localizing lattice distortion, and changing magnetic domain configuration. Furthermore, this study reports for the first time the magnetostriction coefficients of 12 Co-based Heusler alloys, among which Co2MnGa and Co2CrGa exhibit superior potential compared with other Co based Heusler alloys, filling the gap in magnetostriction performance parameters of this system. The linear positive magnetostriction behaviors of the polycrystalline materials are also validated. This study provides a strategy for optimizing magnetostriction performance through atomic site ordering control, and points out a new direction for the development of magnetostrictive materials with high-temperature stability and high spin polarization.
  • 图 1  (a) Co2FeAlxSi1–x的晶体结构(L21结构和B2结构); (b) Co2FeAlxSi1–x样品的粉末XRD图谱; (c) Co2FeAlxSi1–x样品的晶格常数随Al含量x的变化关系

    Figure 1.  (a) Crystal structure of Co2FeAlxSi1–x(L21 structure and B2 structure); (b) powder XRD patterns of Co2FeAlxSi1–x; (b) variation of lattice constant with Al content x in Co2FeAlxSi1–x.

    图 2  Co2FeAlxSi1–x样品退火1 d (a)和7 d (b)的粉末XRD图谱; (c)—(e)退火前后样品的有序度SL21SB2随Al含量x的变化关系    

    Figure 2.  (a), (b) Powder XRD patterns of Co2FeAlxSi1–x annealed for 1 day and 7 days; (c)–(e) variation of ordering degrees SL21 and SB2 with Al content x before and after annealing.

    图 3  (a) 3种不同有序态的磁致伸缩曲线; (b) Co2FeAlxSi1–x退火前后的磁致伸缩应变λ随Al含量x的变化关系

    Figure 3.  (a) Magnetostriction curves of three different ordered states; (b) variation of magnetostriction λs with Al content x in Co2FeAlxSi1–x before and after annealing.

    图 4  (a) Co2FeAlxSi1–x的磁致伸缩应变λSL21的变化关系; (b) Co2FeAlxSi1–x的磁致伸缩应变λSL21/SB2的变化关系

    Figure 4.  (a) Variation of magnetostriction λ with SL21 and SB2 in Co2FeAlxSi1–x; (b) variation of magnetostriction λ with SL21/SB2 in Co2FeAlxSi1–x.

    图 5  Co2FeAlxSi1–x的(a)M-H曲线与(b)磁致伸缩曲线

    Figure 5.  (a) M-H and (b) magnetostriction of Co2FeAlxSi1–x.

    图 6  多晶材料转角磁致伸缩测量示意图

    Figure 6.  Schematic diagram of the rotational magnetostriction measurement for polycrystalline materials.

    图 7  Co2FeAlxSi1–x的磁致伸缩应变λθ的变化关系

    Figure 7.  Variation of magnetostriction λ with θ in Co2FeAlxSi1–x.

    表 1  部分Co基Heusler合金的晶格常数a, 居里温度Tc, 自旋极化率P [3453]与磁致伸缩系数λs

    Table 1.  Lattice constant a, Curie temperature Tc, spin polarization P[3453], and magnetostriction λs of selected co-based heusler alloys.

    成分aTc/KP/%λs/ppm
    Co2FeSi5.64511005722
    Co2FeAl5.72811705821
    Co2FeGa5.73710565924
    Co2VGa5.7923577513
    Co2CrAl5.887334628
    Co2CrGa5.7654956142
    Co2MnAl5.7496935914
    Co2MnGa5.7676945545
    Co2MnSi5.6549855618
    Co2MnGe5.7499055825
    Co2MnSn5.9848296020
    Co2MnSb5.943600508
    DownLoad: CSV
  • [1]

    Gupta R, Husain S, Kumar A, Brucas R, Rydberg A, Svedlindh P 2021 Adv. Opt. Mate. 9 2001987Google Scholar

    [2]

    Kimura T, Hashimoto N, Yamada S, Miyao M, Hamaya K 2012 NPG Asia Mater. 4 e13Google Scholar

    [3]

    Palmstrøm C J 2016 Prog. Cryst. Growth Ch. Mater. 62 371Google Scholar

    [4]

    Yamada S, Kato M, Ichikawa S, Yamada M, Naito T, Fujiwara Y, Hamaya K 2023 Adv. Electron. Mater. 9 2300045Google Scholar

    [5]

    Bachaga T, Zhang J, Khitouni M, Sunol J J 2019 Int. J. Adv. Manuf. Technol. 103 2761Google Scholar

    [6]

    Planes A, Mañosa L, Moya X, Krenke T, Acet M, Wassermann E F 2007 J. Magn. Magn. Mater. 310 2767Google Scholar

    [7]

    de Groot R A, Mueller F M, Engen P G v, Buschow K H J 1983 Phys. Rev. Lett. 50 2024Google Scholar

    [8]

    Galanakis I, Mavropoulos P, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765Google Scholar

    [9]

    Wang W H, Sukegawa H, Shan R, Mitani S, Inomata K 2009 Appl. Phys. Lett. 95 182502Google Scholar

    [10]

    杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪 2019 物理学报 68 046101Google Scholar

    Yang Y M, Li J, Ma H R, Yang G, Mao X J, Li C C 2019 Acta Phys. Sin. 68 046101Google Scholar

    [11]

    Clark A E 1980 Ferromagnetic Materials (Vol. 1) (Amsterdam: North-Holland) p531

    [12]

    Clark A E, Restorff J B, Wun-Fogle M, Lograsso T A, Schlagel D L 2000 IEEE Trans. Magn. 36 3238Google Scholar

    [13]

    Lograsso T A, Ross A R, Schlagel D L, Clark A E, Wun-Fogle M 2003 J. Alloy. Compd. 350 95Google Scholar

    [14]

    Guruswamy S, Srisukhumbowornchai N, Clark A E, Restorff J B, Wun-Fogle M 2000 Scr. Mater. 43 239Google Scholar

    [15]

    Sakon T, Fujimoto N, Kanomata T, Adachi Y 2017 Metals 7 410Google Scholar

    [16]

    Ullakko K, Huang J K, Kantner C, O’Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966Google Scholar

    [17]

    Sato M, Okazaki T, Furuya Y, Wuttig M 2003 Mater. Trans. 44 372Google Scholar

    [18]

    Zhang M, Brück E, Boer F R d, Wu G H 2005 J. Phys. D: Appl. Phys. 38 1361Google Scholar

    [19]

    代学芳, 孙晨光, 曲静萍, 李养贤, 朱伟, 陈京兰, 吴光恒 2009 物理学报 58 8602Google Scholar

    Dai X F, Sun C G, Qu J P, Li Y X, Zhu W, Chen J L, Wu G H 2009 Acta Phys. Sin. 58 8602Google Scholar

    [20]

    Ravel B, Raphael M P, Harris V G, Huang Q 2002 Phys. Rev. B 65 184431Google Scholar

    [21]

    Srivastava Y, Vajpai S K, Srivastava S 2017 J. Magn. Magn. Mater. 433 141Google Scholar

    [22]

    赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒 2011 物理学报 60 107203Google Scholar

    Zhao J J, Shu D, Qi X, Liu E K, Zhu W, Feng L, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 107203Google Scholar

    [23]

    Chumak O, Nabiałek A, Baczewski L T, Seki T, Wang J, Takanashi K, Szymczak H 2025 arXiv: 2502.19102 [cond-mat. mtrl-sci]

    [24]

    Szwacki N G, Majewski J A 2016 J. Magn. Magn. Mater. 409 62Google Scholar

    [25]

    赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 物理学报 60 047108Google Scholar

    Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108Google Scholar

    [26]

    Balke B, Wurmehl S, Fecher G H, Felser C, Kübler J 2008 Sci. Technol. Adv. Mater. 9 014102Google Scholar

    [27]

    Titov A, Jiraskova Y, Zivotsky O, Bursik J, Janickovic D 2018 AIP Adv. 8 047206Google Scholar

    [28]

    Bosu S, Sakuraba Y, Saito K, Wang H, Mitani S, Takanashi K 2010 Phys. Rev. B 81 054426Google Scholar

    [29]

    Chopra H D, Wuttig M 2015 Nature 521 340Google Scholar

    [30]

    He Y K, Han Y J, Stamenov P, Kundys B, Coey J M D, Jiang C B, Xu H B 2018 Nature 556 E5Google Scholar

    [31]

    He Y K, Jiang C B, Coey J M D, Xu H B 2018 J. Magn. Magn. Mater. 466 351Google Scholar

    [32]

    Clark A E, Wun-Fogle M 2002 Smart Structures and Materials 2002 Conference San Diego, Ca, Mar 18-21, 2000 p421

    [33]

    Ksenofontov V, Wójcik M, Wurmehl S, Schneider H, Balke B, Jakob G, Felser C 2010 J. Appl. Phys. 107 09B106Google Scholar

    [34]

    Brown P J, Neumann K U, Webster P J, Ziebeck K R A 2000 J. Phys. -Condes. Matter 12 1827Google Scholar

    [35]

    Buschow K H J, Vanengen P G 1981 J. Magn. Magn. Mater. 25 90Google Scholar

    [36]

    Buschow K H J, Vanengen P G, Jongebreur R 1983 J. Magn. Magn. Mater. 38 1Google Scholar

    [37]

    Guillemard C, Petit-Watelot S, Rojas-Sánchez J C, Hohlfeld J, Ghanbaja J, Bataille A, Le Fèvre P, Bertran F, Andrieu S 2019 Appl. Phy. Lett. 115 172401Google Scholar

    [38]

    Kanomata T, Chieda Y, Endo K, Okada H, Nagasako M, Kobayashi K, Kainuma R, Umetsu R Y, Takahashi H, Furutani Y, Nishihara H, Abe K, Miura Y, Shirai M 2010 Phys. Rev. B 82 144415Google Scholar

    [39]

    Karthik S V, Rajanikanth A, Takahashi Y K, Okhubo T, Hono K 2006 Appl. Phys. Lett. 89 3

    [40]

    Kourov N I, Marchenkov V V, Perevozchikova Y A, Weber H W 2017 Phys. Solid State 59 898Google Scholar

    [41]

    Kudryavtsev Y V, Uvarov N V, Iermolenko V N, Dubowik J 2010 J. Appl. Phys. 108 113708Google Scholar

    [42]

    Nakatani T M, Gercsi Z, Rajanikanth A, Takahashi Y K, Hono K 2008 J. Phys. D: Appl. Phys. 41 225002Google Scholar

    [43]

    Nakatani T M, Rajanikanth A, Gercsi Z, Takahashi Y K, Inomata K, Hono K 2007 J. Appl. Phys. 102 8

    [44]

    Paudel M R, Wolfe C S, Pathak A K, Dubenko I, Ali N, Osofsky M S, Prestigiacomo J C, Stadler S 2012 J. Appl. Phys. 111 023903Google Scholar

    [45]

    Paudel M R, Wolfe C S, Patton H, Dubenko I, Ali N, Christodoulides J A, Stadler S 2009 J. Appl. Phys. 105 4

    [46]

    Rajanikanth A, Takahashi Y K, Hono K 2007 J. Appl. Phys. 101 5

    [47]

    Rajanikanth A, Takahashi Y K, Hono K 2008 J. Appl. Phys. 103 5

    [48]

    Ritchie L, Xiao G, Ji Y, Chen T Y, Chien C L, Zhang M, Chen J L, Liu Z H, Wu G H, Zhang X X 2003 Phys. Rev. B 68 104430Google Scholar

    [49]

    Sakuraba Y, Nakata J, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H 2006 Appl. Phys. Lett. 88 3

    [50]

    Umetsu R Y, Kobayashi K, Fujita A, Kainuma R, Ishida K, Fukamichi K, Sakuma A 2008 Phys. Rev. B 77 104422Google Scholar

    [51]

    Wurmehl S, Fecher G H, Ksenofontov V, Casper F, Stumm U, Felser C, Lin H J, Hwu Y 2006 J. Appl. Phys. 99 3

    [52]

    Zhang M, Brück E, Boer F R d, Li Z Z, Wu G H 2004 J. Phys. D: Appl. Phys. 37 2049Google Scholar

    [53]

    Zhang X Q, Xu H F, Lai B L, Lu Q S, Lu X Y, Chen Y Q, Niu W, Gu C Y, Liu W Q, Wang X F, Liu C, Nie Y F, He L, Xu Y B 2018 Sci. Rep. 8 8074Google Scholar

Metrics
  • Abstract views:  331
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2025
  • Accepted Date:  30 April 2025
  • Available Online:  16 May 2025
  • /

    返回文章
    返回