-
Co-based Heusler alloys have emerged as highly promising systems within the Heusler alloy family due to their high Curie temperatures and potential half-metallicity. Since the concept of half-metallic ferromagnets is proposed, these alloys have attracted significant attention because of their high spin polarization, excellent magnetic performance, and thermal stability. The existing studies predominantly focus on spin-transport properties, but systematic studies on their magnetostriction remain scarce. The electronic structure and magnetism of Co-based Heusler alloys are critically dependent on atomic-site ordering: their spin polarization, Curie temperature, and magnetocrystalline anisotropy are closely related to crystal structure, such as L21 and B2. A highly ordered L21 structure is essential for maintaining half-metallicity, as structural disorder can induce significant changes in electronic hybridization and exchange interactions, thereby significantly changing macroscopic magnetism. Additionally, ordering control is also expected to modulate magnetostriction by modifying lattice symmetry and local distortions. Notably, in Fe–Ga alloys, disorder engineering has been employed to induce local short-range order and lattice distortion, thereby enhancing magnetostriction, a mechanism that may similarly operate in Co-based systems. However, the higher lattice symmetry and stronger orbital hybridization in these alloys can lead to fundamentally distinct mechanisms, which needs to be validated experimentally. This study focuses on the Co2FeAlxSi1–x system to systematically probe the relationship between composition-driven structural evolution (i.e., L21 to B2 transition) and magnetostrictive performance through adjusting Al/Si ratio. The study aims to clarify the correlation between composition-induced structural evolution and magnetostrictive behavior, thereby revealing the regulatory role of atomic ordering in magnetoelastic coupling and providing theoretical insight for designing high-performance magnetostrictive materials. The correlation between atomic site ordering and magnetostriction in Heusler alloy Co2FeAlxSi1–x (x = 0, 0.25, 0.5, 0.75, 1) is systematically investigated in experiment. The results reveal that Al doping drives a structural transition from the highly ordered L21 phase to the disordered B2 phase, inducing a coexisting L21/B2 interface state at x = 0.25–0.5, with the calculated ordering parameters SL21/SB2 ranging from 0.5 to 0.9. The experimental data demonstrate that this interface state significantly enhances the saturation magnetostriction coefficient (λs), which subsequently decreases as it further transitions to the B2-dominated structure. These findings quantitatively clarify the physical mechanism by which local atomic disorder enhances magnetoelastic coupling through reducing cubic symmetry, localizing lattice distortion, and changing magnetic domain configuration. Furthermore, this study reports for the first time the magnetostriction coefficients of 12 Co-based Heusler alloys, among which Co2MnGa and Co2CrGa exhibit superior potential compared with other Co based Heusler alloys, filling the gap in magnetostriction performance parameters of this system. The linear positive magnetostriction behaviors of the polycrystalline materials are also validated. This study provides a strategy for optimizing magnetostriction performance through atomic site ordering control, and points out a new direction for the development of magnetostrictive materials with high-temperature stability and high spin polarization. -
表 1 部分Co基Heusler合金的晶格常数a, 居里温度Tc, 自旋极化率P [34–53]与磁致伸缩系数λs
Table 1. Lattice constant a, Curie temperature Tc, spin polarization P[34–53], and magnetostriction λs of selected co-based heusler alloys.
成分 a/Å Tc/K P/% λs/ppm Co2FeSi 5.645 1100 57 22 Co2FeAl 5.728 1170 58 21 Co2FeGa 5.737 1056 59 24 Co2VGa 5.792 357 75 13 Co2CrAl 5.887 334 62 8 Co2CrGa 5.765 495 61 42 Co2MnAl 5.749 693 59 14 Co2MnGa 5.767 694 55 45 Co2MnSi 5.654 985 56 18 Co2MnGe 5.749 905 58 25 Co2MnSn 5.984 829 60 20 Co2MnSb 5.943 600 50 8 -
[1] Gupta R, Husain S, Kumar A, Brucas R, Rydberg A, Svedlindh P 2021 Adv. Opt. Mate. 9 2001987
Google Scholar
[2] Kimura T, Hashimoto N, Yamada S, Miyao M, Hamaya K 2012 NPG Asia Mater. 4 e13
Google Scholar
[3] Palmstrøm C J 2016 Prog. Cryst. Growth Ch. Mater. 62 371
Google Scholar
[4] Yamada S, Kato M, Ichikawa S, Yamada M, Naito T, Fujiwara Y, Hamaya K 2023 Adv. Electron. Mater. 9 2300045
Google Scholar
[5] Bachaga T, Zhang J, Khitouni M, Sunol J J 2019 Int. J. Adv. Manuf. Technol. 103 2761
Google Scholar
[6] Planes A, Mañosa L, Moya X, Krenke T, Acet M, Wassermann E F 2007 J. Magn. Magn. Mater. 310 2767
Google Scholar
[7] de Groot R A, Mueller F M, Engen P G v, Buschow K H J 1983 Phys. Rev. Lett. 50 2024
Google Scholar
[8] Galanakis I, Mavropoulos P, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765
Google Scholar
[9] Wang W H, Sukegawa H, Shan R, Mitani S, Inomata K 2009 Appl. Phys. Lett. 95 182502
Google Scholar
[10] 杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪 2019 物理学报 68 046101
Google Scholar
Yang Y M, Li J, Ma H R, Yang G, Mao X J, Li C C 2019 Acta Phys. Sin. 68 046101
Google Scholar
[11] Clark A E 1980 Ferromagnetic Materials (Vol. 1) (Amsterdam: North-Holland) p531
[12] Clark A E, Restorff J B, Wun-Fogle M, Lograsso T A, Schlagel D L 2000 IEEE Trans. Magn. 36 3238
Google Scholar
[13] Lograsso T A, Ross A R, Schlagel D L, Clark A E, Wun-Fogle M 2003 J. Alloy. Compd. 350 95
Google Scholar
[14] Guruswamy S, Srisukhumbowornchai N, Clark A E, Restorff J B, Wun-Fogle M 2000 Scr. Mater. 43 239
Google Scholar
[15] Sakon T, Fujimoto N, Kanomata T, Adachi Y 2017 Metals 7 410
Google Scholar
[16] Ullakko K, Huang J K, Kantner C, O’Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966
Google Scholar
[17] Sato M, Okazaki T, Furuya Y, Wuttig M 2003 Mater. Trans. 44 372
Google Scholar
[18] Zhang M, Brück E, Boer F R d, Wu G H 2005 J. Phys. D: Appl. Phys. 38 1361
Google Scholar
[19] 代学芳, 孙晨光, 曲静萍, 李养贤, 朱伟, 陈京兰, 吴光恒 2009 物理学报 58 8602
Google Scholar
Dai X F, Sun C G, Qu J P, Li Y X, Zhu W, Chen J L, Wu G H 2009 Acta Phys. Sin. 58 8602
Google Scholar
[20] Ravel B, Raphael M P, Harris V G, Huang Q 2002 Phys. Rev. B 65 184431
Google Scholar
[21] Srivastava Y, Vajpai S K, Srivastava S 2017 J. Magn. Magn. Mater. 433 141
Google Scholar
[22] 赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒 2011 物理学报 60 107203
Google Scholar
Zhao J J, Shu D, Qi X, Liu E K, Zhu W, Feng L, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 107203
Google Scholar
[23] Chumak O, Nabiałek A, Baczewski L T, Seki T, Wang J, Takanashi K, Szymczak H 2025 arXiv: 2502.19102 [cond-mat. mtrl-sci]
[24] Szwacki N G, Majewski J A 2016 J. Magn. Magn. Mater. 409 62
Google Scholar
[25] 赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 物理学报 60 047108
Google Scholar
Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108
Google Scholar
[26] Balke B, Wurmehl S, Fecher G H, Felser C, Kübler J 2008 Sci. Technol. Adv. Mater. 9 014102
Google Scholar
[27] Titov A, Jiraskova Y, Zivotsky O, Bursik J, Janickovic D 2018 AIP Adv. 8 047206
Google Scholar
[28] Bosu S, Sakuraba Y, Saito K, Wang H, Mitani S, Takanashi K 2010 Phys. Rev. B 81 054426
Google Scholar
[29] Chopra H D, Wuttig M 2015 Nature 521 340
Google Scholar
[30] He Y K, Han Y J, Stamenov P, Kundys B, Coey J M D, Jiang C B, Xu H B 2018 Nature 556 E5
Google Scholar
[31] He Y K, Jiang C B, Coey J M D, Xu H B 2018 J. Magn. Magn. Mater. 466 351
Google Scholar
[32] Clark A E, Wun-Fogle M 2002 Smart Structures and Materials 2002 Conference San Diego, Ca, Mar 18-21, 2000 p421
[33] Ksenofontov V, Wójcik M, Wurmehl S, Schneider H, Balke B, Jakob G, Felser C 2010 J. Appl. Phys. 107 09B106
Google Scholar
[34] Brown P J, Neumann K U, Webster P J, Ziebeck K R A 2000 J. Phys. -Condes. Matter 12 1827
Google Scholar
[35] Buschow K H J, Vanengen P G 1981 J. Magn. Magn. Mater. 25 90
Google Scholar
[36] Buschow K H J, Vanengen P G, Jongebreur R 1983 J. Magn. Magn. Mater. 38 1
Google Scholar
[37] Guillemard C, Petit-Watelot S, Rojas-Sánchez J C, Hohlfeld J, Ghanbaja J, Bataille A, Le Fèvre P, Bertran F, Andrieu S 2019 Appl. Phy. Lett. 115 172401
Google Scholar
[38] Kanomata T, Chieda Y, Endo K, Okada H, Nagasako M, Kobayashi K, Kainuma R, Umetsu R Y, Takahashi H, Furutani Y, Nishihara H, Abe K, Miura Y, Shirai M 2010 Phys. Rev. B 82 144415
Google Scholar
[39] Karthik S V, Rajanikanth A, Takahashi Y K, Okhubo T, Hono K 2006 Appl. Phys. Lett. 89 3
[40] Kourov N I, Marchenkov V V, Perevozchikova Y A, Weber H W 2017 Phys. Solid State 59 898
Google Scholar
[41] Kudryavtsev Y V, Uvarov N V, Iermolenko V N, Dubowik J 2010 J. Appl. Phys. 108 113708
Google Scholar
[42] Nakatani T M, Gercsi Z, Rajanikanth A, Takahashi Y K, Hono K 2008 J. Phys. D: Appl. Phys. 41 225002
Google Scholar
[43] Nakatani T M, Rajanikanth A, Gercsi Z, Takahashi Y K, Inomata K, Hono K 2007 J. Appl. Phys. 102 8
[44] Paudel M R, Wolfe C S, Pathak A K, Dubenko I, Ali N, Osofsky M S, Prestigiacomo J C, Stadler S 2012 J. Appl. Phys. 111 023903
Google Scholar
[45] Paudel M R, Wolfe C S, Patton H, Dubenko I, Ali N, Christodoulides J A, Stadler S 2009 J. Appl. Phys. 105 4
[46] Rajanikanth A, Takahashi Y K, Hono K 2007 J. Appl. Phys. 101 5
[47] Rajanikanth A, Takahashi Y K, Hono K 2008 J. Appl. Phys. 103 5
[48] Ritchie L, Xiao G, Ji Y, Chen T Y, Chien C L, Zhang M, Chen J L, Liu Z H, Wu G H, Zhang X X 2003 Phys. Rev. B 68 104430
Google Scholar
[49] Sakuraba Y, Nakata J, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H 2006 Appl. Phys. Lett. 88 3
[50] Umetsu R Y, Kobayashi K, Fujita A, Kainuma R, Ishida K, Fukamichi K, Sakuma A 2008 Phys. Rev. B 77 104422
Google Scholar
[51] Wurmehl S, Fecher G H, Ksenofontov V, Casper F, Stumm U, Felser C, Lin H J, Hwu Y 2006 J. Appl. Phys. 99 3
[52] Zhang M, Brück E, Boer F R d, Li Z Z, Wu G H 2004 J. Phys. D: Appl. Phys. 37 2049
Google Scholar
[53] Zhang X Q, Xu H F, Lai B L, Lu Q S, Lu X Y, Chen Y Q, Niu W, Gu C Y, Liu W Q, Wang X F, Liu C, Nie Y F, He L, Xu Y B 2018 Sci. Rep. 8 8074
Google Scholar
Metrics
- Abstract views: 331
- PDF Downloads: 9
- Cited By: 0