Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiscale Structural Ordering Control and Its Impact on the Magnetostriction of Heusler Alloy Co2FeAlxSi1-x

Yao Liang Lu Guanghui Du Jie Lau Yong-Chang Xi Xuekui Wang Wenhong

Citation:

Multiscale Structural Ordering Control and Its Impact on the Magnetostriction of Heusler Alloy Co2FeAlxSi1-x

Yao Liang, Lu Guanghui, Du Jie, Lau Yong-Chang, Xi Xuekui, Wang Wenhong
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Co-based Heusler alloys have emerged as highly promising systems within the Heusler alloy family due to their high Curie temperatures and potential half-metallicity. Since the concept of half-metallic ferromagnets was proposed, these alloys have attracted significant attention for their high spin polarization, excellent magnetic performance, and thermal stability. However, while existing studies predominantly focus on spin-transport properties, systematic studies on their magnetostriction remain scarce. The electronic structure and magnetism of Co-based Heusler alloys are critically dependent on atomic-site ordering: their spin polarization, Curie temperature, and magnetocrystalline anisotropy are closely correlated with crystal structures (e.g., L21, B2). A highly ordered L21 structure is essential for preserving half-metallicity, whereas structural disorder can induce significant changes in electronic hybridization and exchange interactions, which significantly alter macroscopic magnetic properties. Additionally, ordering control is also expected to modulate magnetostriction by modifying lattice symmetry and local distortions. Notably, in Fe–Ga alloys, disorder engineering has been employed to induce local short-range order and lattice distortions, thereby enhancing magnetostriction—a mechanism that may similarly operate in Co-based systems. However, the higher lattice symmetry and stronger orbital hybridization in these alloys could lead to fundamentally distinct mechanisms requiring experimental validation. In this study, we focus on the Co2FeAlxSi1-x system to systematically probe the relationship between composition-driven structural evolution (i.e., L21 to B2 transition) and magnetostrictive performance via Al/Si ratio tuning. The study aims to clarify the correlation between composition-induced structural evolution and magnetostrictive behavior, thereby revealing the regulatory role of atomic ordering in magnetoelastic coupling and providing theoretical insight for the design of high-performance magnetostrictive materials.
    This study systematically investigates the correlation between atomic site ordering and magnetostriction in the Heusler alloy Co2FeAlxSi1-x (x = 0, 0.25, 0.5, 0.75, 1) through experimental methods. The results reveal that Al doping drives a structural transition from the highly ordered L21 phase to the disordered B2 phase, inducing a coexisting L21/B2 interface state at x = 0.25~0.5, where the calculated ordering parameters SL21/SB2 range from 0.5 to 0.9. The experimental data demonstrate that this interface state significantly enhances the saturation magnetostriction coefficient (λs), which subsequently decreases upon further transition to the B2-dominated structure. These findings quantitatively clarify the physical mechanism by which local atomic disorder enhances magnetoelastic coupling through reduced cubic symmetry, localized lattice distortions, and altered magnetic domain configurations. Furthermore, this work first reports the magnetostriction coefficients of 12 Co-based Heusler alloys, among which Co2MnGa and Co2CrGa exhibit superior potential compared to others, filling the gap in performance parameters for this system. The linear positive magnetostriction behavior of the polycrystalline materials is also validated. This study proposes a strategy for optimizing magnetostriction performance through atomic site ordering control, offering a new direction for the development of magnetostrictive materials with high-temperature stability and high spin polarization.
  • [1]

    Gupta R, Husain S, Kumar A, Brucas R, Rydberg A, Svedlindh P 2021 Adv. Opt. Mate. 9 2001987

    [2]

    Kimura T, Hashimoto N, Yamada S, Miyao M, Hamaya K 2012 NPG Asia Mater. 4 e13

    [3]

    Palmstrøm C J 2016 Prog. Cryst. Growth Ch. Mater. 62 371

    [4]

    Yamada S, Kato M, Ichikawa S, Yamada M, Naito T, Fujiwara Y, Hamaya K 2023 Adv. Electron. Mater. 9 2300045

    [5]

    Bachaga T, Zhang J, Khitouni M, Sunol J J 2019 Int. J. Adv. Manuf. Technol. 103 2761

    [6]

    Planes A, Mañosa L, Moya X, Krenke T, Acet M, Wassermann E F 2007 J. Magn. Magn. Mater. 310 2767

    [7]

    de Groot R A, Mueller F M, Engen P G v, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [8]

    Galanakis I, Mavropoulos P, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765

    [9]

    Wang W H, Sukegawa H, Shan R, Mitani S, Inomata K 2009 Appl. Phys. Lett. 95 182502

    [10]

    Yang Y M, Li J, Ma H R, Yang G, Mao X J, Li C C 2019 Acta Phys. Sin. 68 046101 (in Chinese) [杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪 2019 物理学报 68 046101]

    [11]

    Clark A E 1980 Ferromagnetic Materials (Vol.1) (Amsterdam:North-Holland) p531

    [12]

    Clark A E, Restorff J B, Wun-Fogle M, Lograsso T A, Schlagel D L 2000 IEEE Trans. Magn. 36 3238

    [13]

    Lograsso T A, Ross A R, Schlagel D L, Clark A E, Wun-Fogle M 2003 J. Alloy. Compd. 350 95

    [14]

    Guruswamy S, Srisukhumbowornchai N, Clark A E, Restorff J B, Wun-Fogle M 2000 Scr. Mater. 43 239

    [15]

    Sakon T, Fujimoto N, Kanomata T, Adachi Y 2017 Metals 7 410

    [16]

    Ullakko K, Huang J K, Kantner C, O’Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [17]

    Sato M, Okazaki T, Furuya Y, Wuttig M 2003 Mater. Trans. 44 372

    [18]

    Zhang M, Brück E, Boer F R d, Wu G H 2005 J. Phys. D: Appl. Phys. 38 1361

    [19]

    Dai X F, Sun C G, Qu J P, Li Y X, Zhu W, Chen J L, Wu G H 2009 Acta Phys. Sin. 58 8602 (in Chinese) [代学芳, 孙晨光, 曲静萍, 李养贤, 朱伟, 陈京兰, 吴光恒 2009 物理学报 58 8602]

    [20]

    Ravel B, Raphael M P, Harris V G, Huang Q 2002 Phys. Rev. B 65 184431

    [21]

    Srivastava Y, Vajpai S K, Srivastava S 2017 J. Magn. Magn. Mater. 433 141

    [22]

    Zhao J-J, Shu D, Qi X, Liu E K, Zhu W, Feng L, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 107203 (in Chinese) [赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒 2011 物理学报 60 107203]

    [23]

    Chumak O, Nabiałek A, Baczewski L T, Seki T, Wang J, Takanashi K, Szymczak H 2025 arXiv:2502.19102 [cond-mat.mtrl-sci]

    [24]

    Szwacki N G, Majewski J A 2016 J. Magn. Magn. Mater. 409 62

    [25]

    Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108 (in Chinese) [赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 物理学报 60 047108]

    [26]

    Balke B, Wurmehl S, Fecher G H, Felser C, Kübler J 2008 Sci. Technol. Adv. Mater. 9 014102

    [27]

    Titov A, Jiraskova Y, Zivotsky O, Bursik J, Janickovic D 2018 AIP Adv. 8 047206

    [28]

    Bosu S, Sakuraba Y, Saito K, Wang H, Mitani S, Takanashi K 2010 Phys. Rev. B 81 054426

    [29]

    Chopra H D, Wuttig M 2015 Nature 521 340

    [30]

    He Y K, Han Y J, Stamenov P, Kundys B, Coey J M D, Jiang C B, Xu H B 2018 Nature 556 E5

    [31]

    He Y K, Jiang C B, Coey J M D, Xu H B 2018 J. Magn. Magn. Mater. 466 351

    [32]

    Clark A E, Wun-Fogle M 2002 Smart Structures and Materials 2002 Conference San Diego, Ca, Mar 18-21, 2000 p421

    [33]

    Ksenofontov V, Wójcik M, Wurmehl S, Schneider H, Balke B, Jakob G, Felser C 2010 J. Appl. Phys. 107 09B106

    [34]

    Brown P J, Neumann K U, Webster P J, Ziebeck K R A 2000 J. Phys.-Condes. Matter 12 1827

    [35]

    Buschow K H J, Vanengen P G 1981 J. Magn. Magn. Mater. 25 90

    [36]

    Buschow K H J, Vanengen P G, Jongebreur R 1983 J. Magn. Magn. Mater. 38 1

    [37]

    Guillemard C, Petit-Watelot S, Rojas-Sánchez J C, Hohlfeld J, Ghanbaja J, Bataille A, Le Fèvre P, Bertran F, Andrieu S 2019 Appl. Phy. Lett. 115 172401

    [38]

    Kanomata T, Chieda Y, Endo K, Okada H, Nagasako M, Kobayashi K, Kainuma R, Umetsu R Y, Takahashi H, Furutani Y, Nishihara H, Abe K, Miura Y, Shirai M 2010 Phys. Rev. B 82 144415

    [39]

    Karthik S V, Rajanikanth A, Takahashi Y K, Okhubo T, Hono K 2006 Appl. Phys. Lett. 89 3

    [40]

    Kourov N I, Marchenkov V V, Perevozchikova Y A, Weber H W 2017 Phys. Solid State 59 898

    [41]

    Kudryavtsev Y V, Uvarov N V, Iermolenko V N, Dubowik J 2010 J. Appl. Phys. 108 113708

    [42]

    Nakatani T M, Gercsi Z, Rajanikanth A, Takahashi Y K, Hono K 2008 J. Phys. D: Appl. Phys. 41 225002

    [43]

    Nakatani T M, Rajanikanth A, Gercsi Z, Takahashi Y K, Inomata K, Hono K 2007 J. Appl. Phys. 102 8

    [44]

    Paudel M R, Wolfe C S, Pathak A K, Dubenko I, Ali N, Osofsky M S, Prestigiacomo J C, Stadler S 2012 J. Appl. Phys. 111 023903

    [45]

    Paudel M R, Wolfe C S, Patton H, Dubenko I, Ali N, Christodoulides J A, Stadler S 2009 J. Appl. Phys. 105 4

    [46]

    Rajanikanth A, Takahashi Y K, Hono K 2007 J. Appl. Phys. 101 5

    [47]

    Rajanikanth A, Takahashi Y K, Hono K 2008 J. Appl. Phys. 103 5

    [48]

    Ritchie L, Xiao G, Ji Y, Chen T Y, Chien C L, Zhang M, Chen J L, Liu Z H, Wu G H, Zhang X X 2003 Phys. Rev. B 68 104430

    [49]

    Sakuraba Y, Nakata J, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H 2006 Appl. Phys. Lett. 88 3

    [50]

    Umetsu R Y, Kobayashi K, Fujita A, Kainuma R, Ishida K, Fukamichi K, Sakuma A 2008 Phys. Rev. B 77 104422

    [51]

    Wurmehl S, Fecher G H, Ksenofontov V, Casper F, Stumm U, Felser C, Lin H J, Hwu Y 2006 J. Appl. Phys. 99 3

    [52]

    Zhang M, Brück E, Boer F R d, Li Z Z, Wu G H 2004 J. Phys. D: Appl. Phys. 37 2049

    [53]

    Zhang X Q, Xu H F, Lai B L, Lu Q S, Lu X Y, Chen Y Q, Niu W, Gu C Y, Liu W Q, Wang X F, Liu C, Nie Y F, He L, Xu Y B 2018 Sci. Rep. 8 8074

  • [1] Lu Kang-Jun, Wang Yi-Fan, Xia Qian, Zhang Gui-Tao, Chen Qian. Structural phase transition induced enhancement of carrier mobility of monolayer RuSe2. Acta Physica Sinica, doi: 10.7498/aps.73.20240557
    [2] Liu Ze-Tao, Chen Bo, Ling Wei-Dong, Bao Nan-Yun, Kang Dong-Dong, Dai Jia-Yu. Phase transitions of palladium under dynamic shock compression. Acta Physica Sinica, doi: 10.7498/aps.71.20211511
    [3] Zhang Shuo, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Effect of defects on magnetostriction and magnetic moment evolution of iron thin films. Acta Physica Sinica, doi: 10.7498/aps.71.20211177
    [4] Phase Transitions of Palladium under Dynamic Shock Compression. Acta Physica Sinica, doi: 10.7498/aps.70.20211511
    [5] Molecular dynamics study on the effect of defects on magnetostriction of iron thin films. Acta Physica Sinica, doi: 10.7498/aps.70.20211177
    [6] Yu Jia, Liu Tong, Zhao Kang, Pan Bo-Jin, Mu Qing-Ge, Ruan Bin-Bin, Ren Zhi-An. Single crystal growth and characterization of the 112-type iron-pnictide EuFeAs2. Acta Physica Sinica, doi: 10.7498/aps.67.20181393
    [7] Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua. Structural phase transition, electronic structures and optical properties of ZnTe. Acta Physica Sinica, doi: 10.7498/aps.64.227802
    [8] Li Zheng-Hua, Li Xiang. Micromagnetic modeling of L10-ordered FePtmagnetic thin films. Acta Physica Sinica, doi: 10.7498/aps.63.167504
    [9] Zhang Chang-Sheng, Ma Tian-Yu, Yan Mi. Magnetostriction-jump effect in〈110〉 oriented Tb0.3Dy0.7Fe1.95 crystal after non-coaxial field annealing. Acta Physica Sinica, doi: 10.7498/aps.60.037505
    [10] Zhao Jing-Jing, Shu Di, Qi Xin, Liu En-Ke, Zhu Wei, Feng Lin, Wang Wen-Hong, Wu Guang-Heng. Structural phase transition and magnetic properties of Co50Fe50-xSix alloys. Acta Physica Sinica, doi: 10.7498/aps.60.107203.1
    [11] Li Chuan, Liu Jing-Hua, Chen Li-Biao, Jiang Cheng-Bao, Xu Hui-Bin. Crytallographic orientation and magmetostriction of FeGa crystals. Acta Physica Sinica, doi: 10.7498/aps.60.097505
    [12] Liu Tao, Li Wei. The effect of aging treatment on the magnetic properties of PtCo alloys. Acta Physica Sinica, doi: 10.7498/aps.58.5773
    [13] Zheng Xiao-Ping, Zhang Pei-Feng, Li Fa-Shen, Hao Yuan. Magnetism, magetostriction, and M?ssbauer effect studies of Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95 alloys. Acta Physica Sinica, doi: 10.7498/aps.58.5768
    [14] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Hao Yuan. Magetostriction, spin reorientation and M?ssbauer effect studies of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys. Acta Physica Sinica, doi: 10.7498/aps.56.535
    [15] Kong Ling-Gang, Kang Jin-Feng, Wang Yi, Liu Li-Feng, Liu Xiao-Yan, Zhang Xing, Han Ru-Qi. Room-temperature ferromagnetism in bulk CoxTi1-xO2-δ induced by the phase transformation in the hydrogenation sintering process. Acta Physica Sinica, doi: 10.7498/aps.55.1453
    [16] Li Bao-He, Feng Chun, Yang Tao, Zhai Zhong-Hai, Teng Jiao, Yu Guang-Hua, Zhu Feng-Wu. The effect of Cu doping on the ordering of FexPt1-x thin films. Acta Physica Sinica, doi: 10.7498/aps.55.2567
    [17] Cui Yu-Ting, Chen Jing-Lan, Liu Guo-Dong, Wu Guang-Heng, Liao Ke-Jun, Wang Wan-Lu. Characteristics of the premartensitic transition in the Ni50.5Mn24.5G25 single crystals. Acta Physica Sinica, doi: 10.7498/aps.54.263
    [18] Zhu Zhi-Yong, Wang Wen-Quan, Miao Yuan-Hua, Wang Yan-Song, Chen Li-Jie, Dai Xue-Fang, Liu Guo-Dong, Chen Jing-Lan, Wu Guang-Heng. Characterization of transitions in MnFeP0.45As0.55 compound. Acta Physica Sinica, doi: 10.7498/aps.54.4909
    [19] Li Bao-He, Hwang Pol, Yang Tao, Zhai Zhong-Hai, Zhu Feng-Wu. Lowering of ordering temperature for L100-FePt in Fe/Pt multilayers. Acta Physica Sinica, doi: 10.7498/aps.54.1836
    [20] Liu Guo-Dong, Li Yang-Xian, Hu Hai-Ning, Qu Jing-Ping, Liu Zhu-Hong, Dai Xue-Fang, Zhang Ming, Cui Yu-Ting, Chen Jing-Lan, Wu Guang-Heng. Giant magnetostriction of melt-spun Fe85Ga15ribbons. Acta Physica Sinica, doi: 10.7498/aps.53.3191
Metrics
  • Abstract views:  147
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  16 May 2025

/

返回文章
返回