Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of cold shock protein on DNA hairpin stability and binding characteristics by single molecule magnetic tweezers

XUE Zhenyong LI Xiangyun HOU Zhiqi QI Xingyu LIU Yanhui CHEN Hu

Citation:

Effect of cold shock protein on DNA hairpin stability and binding characteristics by single molecule magnetic tweezers

XUE Zhenyong, LI Xiangyun, HOU Zhiqi, QI Xingyu, LIU Yanhui, CHEN Hu
cstr: 32037.14.aps.74.20250504
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Cold shock proteins (Csps) are a class of highly conserved nucleic acid-binding protein composed of 65−70 amino acids that form a compact β-barrel structure with five antiparallel β-strands. As nucleic acid-binding proteins, Csps play an important role in bacterial response to cold shock, yet their precise working mechanism is still unclear. As is well known, DNA hairpin undergoes folding-unfolding transitions under small constant forces. Magnetic tweezers technique has obvious advantages in this kind of research, especially its capacity for extended-duration constant-force measurements at pico-Newton force level, which makes it very suitable for characterizing the conformational transition dynamics of DNA hairpin at low forces of several pico-Newton. In this study, we first stretch DNA hairpin from its N- and C-termini by using magnetic tweezers. Then, we sequentially introduce Csp buffer solutions with increasing concentrations into the flow chamber and measure the folding and unfolding rates of the DNA hairpin at different Csp concentrations. It is found that within a certain concentration range, increasing Csp concentration can significantly reduce the DNA hairpin folding rate while keeping the unfolding rate almost unchanged. This behavior occurs because Csp only binds to single-stranded DNA (ssDNA), and interacts with the ssDNA region of the unfolded DNA hairpin, thereby hindering the folding process. As Csp does not interact with double-stranded DNA (dsDNA), the above-mentioned effect on the unfolding process is negligible. Furthermore, the critical force of DNA hairpin progressively decreases with the increase of Csp concentration, demonstrating that Csp effectively destabilizes the hairpin structure. When the Csp concentration reaches sufficiently high levels, the DNA hairpin’s unfolding rate increases considerably. This phenomenon may be caused by the rapid binding of Csp to newly exposed ssDNA regions of partially unfolded DNA hairpins, which prevents refolding and accelerates the unfolding pathway. In force-jump experiments using Csp-containing buffers, the binding preference of Csp for either ssDNA or dsDNA can be directly determined by analyzing whether the delayed response of DNA hairpin extension occurs. In force-increasing jump experiments, no extension delay is observed in the DNA hairpin unfolding process. In contrast, force-decreasing jump experiments shows significant extension delay in the folding process. These single-molecule measurements provide direct evidence that Csp only specifically binds to ssDNA, further demonstrating that its binding kinetics occur very rapidly. This study delves into the molecular mechanisms by which Csps maintain normal cellular functions in cold chock conditions.
      Corresponding author: XUE Zhenyong, 19820200156654@stu.xmu.edu.cn ; LIU Yanhui, yhliu1@gzu.edu.cn ; CHEN Hu, chenhu@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12474200, 12174322) and the 111 Project, China (Grant No. B16029).
    [1]

    Watson J D, Crick F H C 1953 Nature 171 737Google Scholar

    [2]

    Travers A, Muskhelishvili G 2015 FEBS. J. 282 2279Google Scholar

    [3]

    Bailly C, Waring M J, Travers A A 1995 J. Mol. Biol. 253 1Google Scholar

    [4]

    Virstedt J, Berge T, Henderson R M, Waring M J, Travers A A 2004 J. Struct. Biol. 148 66Google Scholar

    [5]

    Dessinges M N, Maier B, Zhang Y, Peliti M, Bensimon D, Croquette V 2002 Phys. Rev. Lett. 89 248102Google Scholar

    [6]

    Zhang C, Tian F J, Zuo H W, et al. 2025 Nat. Commun. 16 113Google Scholar

    [7]

    Hunter C A 1993 J. Mol. Biol. 230 1025Google Scholar

    [8]

    Bosco A, Camunas-Soler J, Ritort F 2014 Nucleic Acids Res. 42 2064Google Scholar

    [9]

    Budkina K S, Zlobin N E, Kononova S V, Ovchinnikov L P, Babakov A V 2020 Biochemistry (Mosc.) 85 1Google Scholar

    [10]

    Lopez M M, Yutani K, Makhatadze G I 1999 J. Biol. Chem. 274 33601Google Scholar

    [11]

    Graumann P, Marahiel M A 1994 FEBS Lett. 338 157Google Scholar

    [12]

    Bae W, Xia B, Inouye M, Severinov K 2000 Proc. Natl. Acad. Sci. 97 7784Google Scholar

    [13]

    Phadtare S, Inouye M, Severinov K 2002 J. Biol. Chem. 277 7239Google Scholar

    [14]

    Jiang W, Jones P, Inouye M 1993 J. Bacteriol. 175 5824Google Scholar

    [15]

    Brandi A, Pietroni P, Gualerzi C O, Pon C L 1996 Mol. Microbiol. 19 231Google Scholar

    [16]

    Goldenberg D, Azar I, Oppenheim A B 1996 Mol. Microbiol. 19 241Google Scholar

    [17]

    Jones P G, Inouye M 1994 Mol. Microbiol. 11 811Google Scholar

    [18]

    Mani A, Gupta D K 2015 J. Biomol. Struct. Dyn. 33 861Google Scholar

    [19]

    Caballero C J, Menendez-Gil P, Catalan-Moreno A, et al. 2018 Nucleic Acids Res. 46 1345Google Scholar

    [20]

    Zhang Y, Burkhardt D H, Rouskin S, Li G W, Weissman J S, Gross C A 2018 Mol. Cell 70 274Google Scholar

    [21]

    Horn G, Hofweber R, Kremer W, Kalbitzer H R 2007 Cell. Mol. Life Sci. 64 1457Google Scholar

    [22]

    Bustamante C, Alexander L, Maciuba K, Kaiser C M 2020 Annu. Rev. Biochem. 89 443Google Scholar

    [23]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar

    [24]

    Zlatanova J, Lindsay S M, Leuba S H 2000 Prog. Biophys. Mol. Bio. 74 37Google Scholar

    [25]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122Google Scholar

    [26]

    Stirnemann G, Giganti D, Fernandez J M, Berne B J 2013 Proc. Natl. Acad. Sci. 110 3847Google Scholar

    [27]

    Xue Z Y, Sun H, Hong H Y, Zhang Z W, Zhang Y H, Guo Z L, Le S M, Chen H 2024 Phys. Rev. Res. 6 023170Google Scholar

    [28]

    Hong H Y, Guo Z L, Sun H, Yu P, Su H H, Ma X N, Chen H 2021 Commun. Chem. 4 156Google Scholar

    [29]

    Xue Z Y, Yu P, Zhang Y H, Zhang Z W, Sun H, Hou Z Q, Hong H Y, Le S M, Chen H 2025 Phys. Rev. E 111 014413Google Scholar

    [30]

    Petrosyan R, Narayan A, Woodside M T 2021 J. Mol. Biol. 433 167207Google Scholar

    [31]

    Liang T, Yang C, Song X Y, Feng Y Y, Liu Y H, Chen H 2023 Phys. Rev. E 108 014406Google Scholar

    [32]

    Zeeb M, Balbach J 2003 Protein Sci. 12 112Google Scholar

    [33]

    Lopez M M, Yutani K, Makhatadze G I 2001 J. Biol. Chem. 276 15511Google Scholar

  • 图 1  三种DNA发夹结构 (a), (b)茎部为随机序列的发夹-15R60T7 (a)和发夹-15R60T3 (b); (c)茎部含特异性ATTGG基序(虚线框)的发夹-19R52T7

    Figure 1.  Three DNA Hairpin structures: (a), (b) Hairpin-15R60T7 (a) and Hairpin 15R60T3 (b) with random stem sequences; (c) Hairpin -19R52T7 containing the specific ATTGG motif in the stem (marked by a dashed box).

    图 2  DNA发夹构建物示意图. 限制性内切酶特异性切割DNA手柄(红线)后, 通过T4 DNA连接酶与发夹、侧链部分连接. 生物素标记的Handle-1的5’端与磁球表面的链霉亲和素相连, 巯基修饰的Handle-2的5’端与载玻片表面Sulfo-SMCC相连. 斜向虚线表示省略的碱基对, 未按标准比例绘制

    Figure 2.  Schematic of DNA Hairpin construct. The DNA handles are specifically cleaved by restriction endonuclease (red lines), followed by T4 DNA ligase-mediated junction with the Hairpin and flank segments. The 5’ end of biotin-labeled Handle-1 is conjugated to streptavidin on the surface of magnetic beads, while the 5’-thiol-modified end of Handle-2 is conjugated with Sulfo-SMCC-coated glass substrates. Dashed diagonal lines represent omitted base pairs. Structural dimensions are not proportionally scaled.

    图 3  DNA发夹-15R60T7代表性的力-延伸示意图. 当拉力增大时, DNA发夹在大约9.4 pN处以12.2 nm的步长去折叠, 紧接着又折叠回去; 在约10.2 pN处发生第二次去折叠, 步长为13.3 nm, 插图描述了DNA 发夹在力作用下发生折叠-去折叠转变

    Figure 3.  Representative force-extension curve of DNA Hairpin-15R60T7. As the force increases, the DNA Hairpin unfolds at approximately 9.4 pN with a step size of 12.2 nm, followed by a refolding event. A second unfolding event occurs at around 10.2 pN with a step size of 13.3 nm. The inset illustrates the force-induced folding and unfolding transitions of the DNA Hairpin.

    图 4  BcCsp浓度梯度下DNA发夹平衡态动力学表征 (a)—(c) DNA发夹-15R60T7在无BcCsp体系中的时间-延伸曲线, 分别对应10.73 pN, 9.88 pN和9.04 pN的恒力测量条件; (d)—(f)含梯度浓度BcCsp (50, 500和5000 nmol/L)时, 9.04 pN力场下DNA发夹的动力学响应; 右侧面板为对应平滑延伸的相对频率分布, 均呈现双峰分布特征(黑色原始数据采样率200 Hz, 红色曲线经0.1 s 时间窗口平滑处理)

    Figure 4.  Equilibrium measurement of DNA Hairpin in solutions with different concentration of BcCsp: (a)–(c) Extension time course of DNA Hairpin-15R60T7 in the absence of BcCsp under constant force measurements at 10.73 pN, 9.88 pN, and 9.04 pN; (d)–(f) dynamic responses of the DNA Hairpin at 9.04 pN in solutions with BcCsp concentrations of 50, 500, and 5000 nmol/L. The right panels show relative frequency of the smoothed extensions, exhibiting two peaks. The raw data (black) is recorded at 200 Hz and smoothed over a 0.1 s time window (red).

    图 5  在0—5000 nmol/L BcCsp范围内, DNA发夹-15R60T7在 9.04 pN下去折叠态(a)和折叠态(b)的存活概率, 其中实线表示指数拟合以确定kfku

    Figure 5.  Survival probability of folded (a) and unfolded states (b) of DNA Hairpin-15R60T7 at 9.04 pN in solutions with 0–5000 nmol/L BcCsp. The solid curves represent the exponential fitting to determine kf and ku.

    图 6  DNA发夹在Csp测量缓冲液中力依赖的折叠和去折叠速率 (a), (b) DNA发夹-15R60T7 (a)和发夹-15R60T3 (b)分别在0—5000 nmol/L BcCsp测量缓冲液中力依赖的折叠和去折叠速率; (c) DNA发夹-15R60T3在0—3000 nmol/L BsCsp测量缓冲液中力依赖的折叠和去折叠速率; 箭头表示的交叉点给出了DNA发夹在不同浓度Csp下的临界力

    Figure 6.  Force-dependent folding and unfolding rates of DNA Hairpin in solutions with different concentration of Csp: (a), (b) Force-dependent folding and unfolding rates of DNA Hairpin-15R60T7 (a) and Hairpin-15R60T3 (b) in solutions with 0–5000 nmol/L BcCsp; (c) force-dependent folding and unfolding rates of DNA Hairpin-15R60T3 in solutions with 0–3000 nmol/L BsCsp. The intersection points indicated by the arrows give the critical forces of the DNA Hairpin at different concentrations of Csp.

    图 7  DNA发夹-19R52T7典型的力-延伸示意图. DNA发夹在大约12.0 pN处以17.6 nm的步长发生去折叠, 当力加载到65 pN时, DNA双链手柄发生过渡拉伸转变

    Figure 7.  Representative force-extension curve of DNA Hairpin-19R52T7. The DNA Hairpin unfolds at approximately 12.0 pN with a step size of 17.6 nm, and the DNA double-stranded handles overstretch when force is 65 pN.

    图 8  力跳跃实验研究TmCsp与单双链DNA结合动力学. (a) 0 nmol/L, (b) 100 nmol/L和(c) 500 nmol/L TmCsp 存在时, DNA发夹-19R52T7 去折叠和折叠的典型力跳变测量; (a)—(c)左侧的第1个力跳变验证TmCsp是否与dsDNA结合, 左侧的第2个力跳变验证TmCsp是否与ssDNA相互作用

    Figure 8.  Force-jump experiments to investigate the binding kinetics of TmCsp to ssDNA and dsDNA. Representative force-jump measurements of DNA Hairpin-19R52T7 in the presence of (a) 0 nmol/L, (b) 100 nmol/L, and (c) 500 nmol/L TmCsp. In panels (a)–(c), the first force jump (left) determines whether TmCsp binds to dsDNA, while the second force jump (right) assesses its interaction with ssDNA.

    图 9  DNA发夹-19R52T7与TmCsp结合动力学的蛋白浓度和去折叠时间依赖性分析 (a) 100 nmol/L和500 nmol/L TmCsp溶液中, DNA发夹-19R52T7在8.0 pN下的去折叠态的存活概率, 其中实线为指数拟合, 用于确定折叠速率; (b), (c) 16.0 pN拉力条件下, 去折叠态停留时间对DNA发夹在8.0 pN下的折叠速率(b)和结合概率(c)的影响

    Figure 9.  Analysis of protein concentration and unfolding time dependence in the binding kinetics of TmCsp with DNA Hairpin-19R52T7. (a) Survival probability of the unfolded state for DNA Hairpin-19R52T7 at 8.0 pN in the presence of 100 nmol/L and 500 nmol/L TmCsp. The solid lines represent exponential fitting to determine the folding rates. (b), (c) Effect of unfolded state dwell time of DNA Hairpin at 16.0 pN on the folding rate at 8.0 pN (b) and the binding probability (c).

  • [1]

    Watson J D, Crick F H C 1953 Nature 171 737Google Scholar

    [2]

    Travers A, Muskhelishvili G 2015 FEBS. J. 282 2279Google Scholar

    [3]

    Bailly C, Waring M J, Travers A A 1995 J. Mol. Biol. 253 1Google Scholar

    [4]

    Virstedt J, Berge T, Henderson R M, Waring M J, Travers A A 2004 J. Struct. Biol. 148 66Google Scholar

    [5]

    Dessinges M N, Maier B, Zhang Y, Peliti M, Bensimon D, Croquette V 2002 Phys. Rev. Lett. 89 248102Google Scholar

    [6]

    Zhang C, Tian F J, Zuo H W, et al. 2025 Nat. Commun. 16 113Google Scholar

    [7]

    Hunter C A 1993 J. Mol. Biol. 230 1025Google Scholar

    [8]

    Bosco A, Camunas-Soler J, Ritort F 2014 Nucleic Acids Res. 42 2064Google Scholar

    [9]

    Budkina K S, Zlobin N E, Kononova S V, Ovchinnikov L P, Babakov A V 2020 Biochemistry (Mosc.) 85 1Google Scholar

    [10]

    Lopez M M, Yutani K, Makhatadze G I 1999 J. Biol. Chem. 274 33601Google Scholar

    [11]

    Graumann P, Marahiel M A 1994 FEBS Lett. 338 157Google Scholar

    [12]

    Bae W, Xia B, Inouye M, Severinov K 2000 Proc. Natl. Acad. Sci. 97 7784Google Scholar

    [13]

    Phadtare S, Inouye M, Severinov K 2002 J. Biol. Chem. 277 7239Google Scholar

    [14]

    Jiang W, Jones P, Inouye M 1993 J. Bacteriol. 175 5824Google Scholar

    [15]

    Brandi A, Pietroni P, Gualerzi C O, Pon C L 1996 Mol. Microbiol. 19 231Google Scholar

    [16]

    Goldenberg D, Azar I, Oppenheim A B 1996 Mol. Microbiol. 19 241Google Scholar

    [17]

    Jones P G, Inouye M 1994 Mol. Microbiol. 11 811Google Scholar

    [18]

    Mani A, Gupta D K 2015 J. Biomol. Struct. Dyn. 33 861Google Scholar

    [19]

    Caballero C J, Menendez-Gil P, Catalan-Moreno A, et al. 2018 Nucleic Acids Res. 46 1345Google Scholar

    [20]

    Zhang Y, Burkhardt D H, Rouskin S, Li G W, Weissman J S, Gross C A 2018 Mol. Cell 70 274Google Scholar

    [21]

    Horn G, Hofweber R, Kremer W, Kalbitzer H R 2007 Cell. Mol. Life Sci. 64 1457Google Scholar

    [22]

    Bustamante C, Alexander L, Maciuba K, Kaiser C M 2020 Annu. Rev. Biochem. 89 443Google Scholar

    [23]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar

    [24]

    Zlatanova J, Lindsay S M, Leuba S H 2000 Prog. Biophys. Mol. Bio. 74 37Google Scholar

    [25]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122Google Scholar

    [26]

    Stirnemann G, Giganti D, Fernandez J M, Berne B J 2013 Proc. Natl. Acad. Sci. 110 3847Google Scholar

    [27]

    Xue Z Y, Sun H, Hong H Y, Zhang Z W, Zhang Y H, Guo Z L, Le S M, Chen H 2024 Phys. Rev. Res. 6 023170Google Scholar

    [28]

    Hong H Y, Guo Z L, Sun H, Yu P, Su H H, Ma X N, Chen H 2021 Commun. Chem. 4 156Google Scholar

    [29]

    Xue Z Y, Yu P, Zhang Y H, Zhang Z W, Sun H, Hou Z Q, Hong H Y, Le S M, Chen H 2025 Phys. Rev. E 111 014413Google Scholar

    [30]

    Petrosyan R, Narayan A, Woodside M T 2021 J. Mol. Biol. 433 167207Google Scholar

    [31]

    Liang T, Yang C, Song X Y, Feng Y Y, Liu Y H, Chen H 2023 Phys. Rev. E 108 014406Google Scholar

    [32]

    Zeeb M, Balbach J 2003 Protein Sci. 12 112Google Scholar

    [33]

    Lopez M M, Yutani K, Makhatadze G I 2001 J. Biol. Chem. 276 15511Google Scholar

  • [1] Zhang Zhi-Peng, Liu Shuai, Zhang Yu-Qiong, Xiong Ying, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang. Rotation manipulation of single-molecule magnetic trapping and gene transcription regulation dynamics. Acta Physica Sinica, 2023, 72(21): 218701. doi: 10.7498/aps.72.20231089
    [2] Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu. Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein. Acta Physica Sinica, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [3] Jia Qi, Fan Qin-Kai, Hou Wen-Qing, Yang Chen-Guang, Wang Li-Bang, Wang Hao, Xu Chun-Hua, Li Ming, Lu Ying. Control of DNA polymerase gp5 chain substitution by DNA double strand annealing pressure. Acta Physica Sinica, 2021, 70(15): 158701. doi: 10.7498/aps.70.20210707
    [4] Ma Jian-Bing, Zhai Yong-Liang, Nong Da-Guan, Li Jing-Hua, Fu Hang, Zhang Xing-Hua, Li Ming, Lu Ying, Xu Chun-Hua. Single molecule transverse magnetic tweezers based on light sheet illumination. Acta Physica Sinica, 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [5] Lu Yue, Ma Jian-Bing, Teng Cui-Juan, Lu Ying, Li Ming, Xu Chun-Hua. Binding process between E.coli SSB and ssDNA by single-molecule dynamics. Acta Physica Sinica, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [6] Chen Ze, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Xu Chun-Hua, Zhang Hui-Dong, Lu Ying. T7 helicase unwinding and stand switching investigated via single-molecular technology. Acta Physica Sinica, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [7] Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua. Interaction between Sso7d and DNA studied by single-molecule technique. Acta Physica Sinica, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [8] Zhao Zhen-Ye, Xu Chun-Hua, Li Jing-Hua, Huang Xing-Yuan, Ma Jian-Bing, Lu Ying. Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection. Acta Physica Sinica, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [9] Xiao Shi-Yan, Liang Hao-Jun. DNA and DNA computation based on toehold-mediated strand-displacement reactions. Acta Physica Sinica, 2016, 65(17): 178106. doi: 10.7498/aps.65.178106
    [10] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [11] Cao Bo-Zhi, Lin Yu, Wang Yan-Wei, Yang Guang-Can. Single molecular study on interactions between avidin and DNA. Acta Physica Sinica, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [12] Zhang Yu-Wei, Yan Yan, Nong Da-Guan, Xu Chun-Hua, Li Ming. Combination of magnetic tweezers with DNA hairpin as a potential approach to the study of RecA-mediated homologous recombination. Acta Physica Sinica, 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [13] Geng Du-Yan, Xie Hong-Juan, Wan Xiao-Wei, Xu Gui-Zhi. Study on regulatory network of proteins based on DNA damage. Acta Physica Sinica, 2014, 63(1): 018702. doi: 10.7498/aps.63.018702
    [14] Wang Shuang, Zheng Hai-Zi, Zhao Zhen-Ye, Lu Yue, Xu Chun-Hua. A pair of high resolution magnetic tweezers with illumination of total reflection evanescent field and its application in the study of DNA helicases. Acta Physica Sinica, 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [15] Ran Shi-Yong. Brownian motion in a harmonic trap: magnetic tweezers experiment and its simulation. Acta Physica Sinica, 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [16] Zhang Xing-Hua, Xiao Bin, Hou Xi-Miao, Xu Chun-Hua, Wang Peng-Ye, Li Ming. Study of cisplatin-induced DNA compaction using single molecule magnetic tweezers. Acta Physica Sinica, 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [17] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Deng Chao-Sheng, Guo Ai-Min. The localized properties of electronic states and conductivity of DNA sequence. Acta Physica Sinica, 2006, 55(10): 5562-5567. doi: 10.7498/aps.55.5562
    [18] Ma Song-Shan, Xu Hui, Liu Xiao-Liang, Guo Ai-Min. Characteristics of the electronic structure of DNA sequence. Acta Physica Sinica, 2006, 55(6): 3170-3174. doi: 10.7498/aps.55.3170
    [19] Liu Yu-Ying, Dou Shuo-Xing, Wang Peng-Ye, Xie Ping, Wang Wei-Chi. Study of interactions between DNA and histone with molecular combing method. Acta Physica Sinica, 2005, 54(2): 622-627. doi: 10.7498/aps.54.622
    [20] Wu Shi-Ying, Zhang Yi, Lei Xiao-Ling, Hu Jun, Ai Xiao-Bai, Li Min-Qian. . Acta Physica Sinica, 2002, 51(8): 1887-1891. doi: 10.7498/aps.51.1887
Metrics
  • Abstract views:  156
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2025
  • Accepted Date:  20 May 2025
  • Available Online:  04 June 2025
  • Published Online:  20 June 2025

/

返回文章
返回