Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deformation characteristic and rejuvenation mechanism of amorphous alloy during the mechanical cycling

AN Wanying LIANG Shuyi ZHANG Langting KATO Hidemi QIAO Jichao

Citation:

Deformation characteristic and rejuvenation mechanism of amorphous alloy during the mechanical cycling

AN Wanying, LIANG Shuyi, ZHANG Langting, KATO Hidemi, QIAO Jichao
cstr: 32037.14.aps.74.20250563
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The engineering applications of amorphous alloys are largely restricted by structural relaxation. Notably, the dissipative component of cyclic loading dominates the thermodynamic energy in practical applications of amorphous alloys. Mechanical rejuvenation, achieved through cyclic loading, offers an effective solution to this problem. In this study, we systematically investigate the deformation characteristics and rejuvenation mechanism of Pd20Pt20Cu20Ni20P20 amorphous alloy under mechanical cycling using dynamic mechanical analysis (DMA). By employing a two-phase Kelvin model and continuous relaxation time spectrum, we elucidate the interplay between mechanical deformation and energy dissipation during cyclic loading. The experimental results demonstrate that the strain rate increases significantly with the intensity of mechanical cycling, indicating enhanced dynamic activity in the glassy matrix. At higher cycling intensities, anelastic deformation is promoted, activating a broader spectrum of defects and amplifying dynamic heterogeneity. Through differential scanning calorimetry (DSC), we establish a quantitative correlation between deformation and energetic state, revealing that rejuvenation originates from internal heating induced by anelastic strain. A comparative analysis with creep deformation reveals that mechanical cycling exhibits a superior rejuvenation potential, attributed to its ability to periodically excite multi-scale defect clusters and sustain non-equilibrium states. The key findings of this work include: 1) Deformation mechanism: Cyclic loading enhances atomic mobility and facilitates deformation unit activation; 2) Energy landscape: The enthalpy change (ΔH) measured by DSC provides a direct metric for rejuvenation efficiency; 3) Dynamic heterogeneity: Mechanical cycling broadens the relaxation time spectrum, reflecting increased dynamic heterogeneity.
      Corresponding author: QIAO Jichao, qjczy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12472069, 52271153), the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University, China (Grant No. CX2024012), and the China Association for Science and Technology (CAST) Youth Talent Support Program-Doctoral Student Special Project.
    [1]

    Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater. Sci. 145 101311Google Scholar

    [2]

    Li F, Zhang Z, Liu H, Zhu W, Wang T, Park M, Zhang J, Bönninghoff N, Feng X, Zhang H, Luan J, Wang J, Liu X, Chang T, Chu J P, Lu Y, Liu Y, Guan P, Yang Y 2024 Nat. Mater. 23 52Google Scholar

    [3]

    王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨 2024 物理学报 73 217101Google Scholar

    Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101Google Scholar

    [4]

    姜晓月, 黄志敏, 王璇, 张响, 杨卫明, 刘海顺 2025 物理学报 74 017501Google Scholar

    Jiang X Y, Huang Z M, Wang X, Zhang X, Yang W M, Liu H S 2025 Acta Phys. Sin. 74 017501Google Scholar

    [5]

    Şopu D, Yuan X, Spieckermann F, Eckert J 2024 Acta Mater. 275 120033Google Scholar

    [6]

    梁淑一, 张浪渟, 朱航辰, 邢光辉, 乔吉超 2025 物理学报 74 136401Google Scholar

    Liang S Y, Zhang L T, Zhu H C, Xing G H, Qiao J C 2025 Acta Phys. Sin. 74 136401Google Scholar

    [7]

    Deshmukh A A, Ranganathan R 2025 J. Mater. Sci. Technol. 204 127Google Scholar

    [8]

    Yang C, Zhou H B, Duan J, Cai S L, Ding G, Zhang B B, Shi C J, Dai L H, Wilde G, Jiang M Q 2025 Fundam. Res. https://doi.org/10.1016/j.fmre.2025.03.008

    [9]

    Houghton O S, Greer A L 2025 Acta Mater. 288 120862Google Scholar

    [10]

    Riechers B, Das A, Rashidi R, Dufresne E, Maaß R 2025 Mater. Today 82 92Google Scholar

    [11]

    Balal A H, Bian X L, Han D X, Jia Y F, Ali S, Jia Y D, Wang G 2024 Mater. Charact. 212 113977Google Scholar

    [12]

    Yang Y, Geng J, Cao Y, Fan L, Shi B 2025 Scr. Mater. 256 116418Google Scholar

    [13]

    Yang Z Y, Dai L H 2022 Phys Rev. Mater. 6 L100602Google Scholar

    [14]

    Cheng Y, Shen Y, An Q, Jiang M, Huang C, Goddard W A, Wu X 2025 Extreme Mech. Lett. 74 102280Google Scholar

    [15]

    Wang C, Yu J, Lai J, Wang B, Zhao F, Jiang Z, Xiao Z 2025 Appl. Surf. Sci. 686 162105Google Scholar

    [16]

    Li X X, Wang J G, Ke H B, Yang C, Wang W H 2022 Mater. Today Phys. 27 100782Google Scholar

    [17]

    Pan J, Wang Y X, Guo Q, Zhang D, Greer A L, Li Y 2018 Nat. Commun. 9 560Google Scholar

    [18]

    Ross P, Küchemann S, Derlet P M, Yu H, Arnold W, Liaw P, Samwer K, Maass R 2017 Acta Mater. 138 111Google Scholar

    [19]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [20]

    Costa M B, Londoño J J, Blatter A, Hariharan A, Gebert A, Carpenter M A, Greer A L 2023 Acta Mater. 244 118551Google Scholar

    [21]

    Gao Y, Ding G, Yang C, Zhang B B, Shi C J, Dai L H, Jiang M Q 2023 J. Non-Cryst. Solids 615 122410Google Scholar

    [22]

    Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar

    [23]

    Sun Y H, Concustell A, Greer A L 2016 Nat. Rev. Mater. 1 16039Google Scholar

    [24]

    Liang S Y, Zhang L T, Wang B, Wang Y J, Yang Y, Pineda E, Qiao J C 2025 International Journal of Mechanical Sciences 302 110573Google Scholar

    [25]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546Google Scholar

    [26]

    Wu Y, Ertekin E, Sehitoglu H 2017 Acta Mater. 135 158Google Scholar

    [27]

    Xing G H, Hao Q, Lü G J, Zhu F, Wang Y J, Yang Y, Pineda E, Qiao J C 2025 J. Mater. Sci. Technol. 218 135Google Scholar

    [28]

    Zhang L T, Wang Y J, Yang Y, Wada T, Kato H, Qiao J C 2024 Int. J. Mech. Sci. 281 109661Google Scholar

    [29]

    Khonik V, Kobelev N 2019 Metal 9 605Google Scholar

    [30]

    Qiao J C, Chen Y X, Pelletier J M, Kato H, Crespo D, Yao Y, Khonik V A 2018 Mater. Sci. Eng. 719 164Google Scholar

    [31]

    Wang Z, Wang W H 2019 Nat. Sci. Rev. 6 304Google Scholar

    [32]

    Şopu D 2023 J. Alloys Compd. 960 170585Google Scholar

    [33]

    Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876Google Scholar

    [34]

    Schuh C A, Lund A C, Nieh T G 2004 Acta Mater. 52 5879Google Scholar

    [35]

    Yu P F, Feng S D, Xu G S, Guo X L, Wang Y Y, Zhao W, Qi L, Li G, Liaw P K, Liu R P 2014 Scr. Mater. 90 45Google Scholar

    [36]

    Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M, Qiao J C 2024 Int. J. Fatigue 187 108446Google Scholar

    [37]

    Liang S Y, Zhu F, Wang Y J, Pineda E, Wada T, Kato H, Qiao J C 2024 Int. J. Eng. Sci. 205 104146Google Scholar

    [38]

    Castellero A, Moser B, Uhlenhaut D I, Torre F H D, Löffler J F 2008 Acta Mater. 56 3777Google Scholar

    [39]

    Yuan C C, Lv Z W, Li X, Pang C M, Liu R, Yang C, Ma J, Zhu W W, Huang B, Ke H B 2023 Intermetallics 153 107803Google Scholar

    [40]

    Zhang L T, Wang Y J, Nabahat M, Pineda E, Yang Y, Pelletier J M, Crespo D, Qiao J C 2024 Int. J. Plast. 174 103923Google Scholar

    [41]

    Zhang L T, Wang Y J, Pineda E, Kato H, Yang Y, Qiao J C 2022 Scr. Mater. 214 114673Google Scholar

    [42]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81Google Scholar

    [43]

    Ge T P, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 204905Google Scholar

    [44]

    Tsai P, Kranjc K, Flores K M 2017 Acta Mater. 139 11Google Scholar

    [45]

    Zella L, Moon J, Keffer D, Egami T 2022 Acta Mater. 239 118254Google Scholar

    [46]

    Monnier X, Cangialosi D, Ruta B, Busch R, Gallino I 2020 Sci. Adv. 6 eaay1454Google Scholar

    [47]

    Luo Q, Zhang Z, Li D, Luo P, Wang W, Shen B 2022 Nano Lett. 22 2867Google Scholar

    [48]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar

  • 图 1  (a)蠕变、(b)循环加载过程中能量耗散计算方式示意图

    Figure 1.  Schematic diagram of (a) creep and (b) energy dissipation calculation methods during mechanical cycling.

    图 2  不同应力速率条件下机械循环过程中Pd20Pt20Cu20Ni20P20非晶合金(a)应变、(b)蠕变耗能、(c)总应变耗能和(d)蠕变耗散分量权重系数随时间的演化

    Figure 2.  Evolution of the weight coefficients of (a) strain, (b) creep energy, (c) total strain energy dissipation, and (d) creep dissipation component of Pd20Pt20Cu20Ni20P20 amorphous alloy during mechanical cycling at different stress rates.

    图 3  200 MPa/min条件下非晶合金的瞬时应力(a)及其对应的拟合曲线(b); (c)应力ε值、(d)特征弛豫时间$ \tau $值、(e)斜率随时间的演化; (f)激活体积随应力速率的演化

    Figure 3.  (a) Separation stress of amorphous alloy at 200 MPa/min and (b) its corresponding fitting curve; (c) stress value, (d) characteristic relaxation time value, (e) slope evolution over time; (f) evolution of activation volume with stress rate.

    图 4  (a)典型蠕变曲线及其对应的拟合曲线; (b) 25 MPa/min条件下非晶合金瞬时应力的高斯分布拟合结果; 拟合弛豫时间的(c)均值、(d)方差

    Figure 4.  (a) Typical creep curves and their corresponding fitting curves; (b) Gaussian distribution fitting results of separation stress of amorphous alloys at 25 MPa/min; (c) means, (d) variance of fitted relaxation times.

    图 5  (a)应力速率200 MPa/min的样品机械循环-回复过程中黏弹性、黏塑性和能量损耗随回复时间演化过程, 插图为应力速率200 MPa/min的样品机械循环-回复过程中应变随时间的演化; (b)机械循环、蠕变分别回复8 h样品DSC曲线

    Figure 5.  (a) Evolution of viscoelasticity, viscoplasticity and energy loss with response time during mechanical cycling-response of samples with a stress rate of 200 MPa/min, and the inset shows the evolution of strain with time during mechanical cycling-response of samples with a stress rate of 200 MPa/min; (b) DSC curves of samples responding to mechanical cycling and creep for 8 h, respectively.

  • [1]

    Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater. Sci. 145 101311Google Scholar

    [2]

    Li F, Zhang Z, Liu H, Zhu W, Wang T, Park M, Zhang J, Bönninghoff N, Feng X, Zhang H, Luan J, Wang J, Liu X, Chang T, Chu J P, Lu Y, Liu Y, Guan P, Yang Y 2024 Nat. Mater. 23 52Google Scholar

    [3]

    王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨 2024 物理学报 73 217101Google Scholar

    Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101Google Scholar

    [4]

    姜晓月, 黄志敏, 王璇, 张响, 杨卫明, 刘海顺 2025 物理学报 74 017501Google Scholar

    Jiang X Y, Huang Z M, Wang X, Zhang X, Yang W M, Liu H S 2025 Acta Phys. Sin. 74 017501Google Scholar

    [5]

    Şopu D, Yuan X, Spieckermann F, Eckert J 2024 Acta Mater. 275 120033Google Scholar

    [6]

    梁淑一, 张浪渟, 朱航辰, 邢光辉, 乔吉超 2025 物理学报 74 136401Google Scholar

    Liang S Y, Zhang L T, Zhu H C, Xing G H, Qiao J C 2025 Acta Phys. Sin. 74 136401Google Scholar

    [7]

    Deshmukh A A, Ranganathan R 2025 J. Mater. Sci. Technol. 204 127Google Scholar

    [8]

    Yang C, Zhou H B, Duan J, Cai S L, Ding G, Zhang B B, Shi C J, Dai L H, Wilde G, Jiang M Q 2025 Fundam. Res. https://doi.org/10.1016/j.fmre.2025.03.008

    [9]

    Houghton O S, Greer A L 2025 Acta Mater. 288 120862Google Scholar

    [10]

    Riechers B, Das A, Rashidi R, Dufresne E, Maaß R 2025 Mater. Today 82 92Google Scholar

    [11]

    Balal A H, Bian X L, Han D X, Jia Y F, Ali S, Jia Y D, Wang G 2024 Mater. Charact. 212 113977Google Scholar

    [12]

    Yang Y, Geng J, Cao Y, Fan L, Shi B 2025 Scr. Mater. 256 116418Google Scholar

    [13]

    Yang Z Y, Dai L H 2022 Phys Rev. Mater. 6 L100602Google Scholar

    [14]

    Cheng Y, Shen Y, An Q, Jiang M, Huang C, Goddard W A, Wu X 2025 Extreme Mech. Lett. 74 102280Google Scholar

    [15]

    Wang C, Yu J, Lai J, Wang B, Zhao F, Jiang Z, Xiao Z 2025 Appl. Surf. Sci. 686 162105Google Scholar

    [16]

    Li X X, Wang J G, Ke H B, Yang C, Wang W H 2022 Mater. Today Phys. 27 100782Google Scholar

    [17]

    Pan J, Wang Y X, Guo Q, Zhang D, Greer A L, Li Y 2018 Nat. Commun. 9 560Google Scholar

    [18]

    Ross P, Küchemann S, Derlet P M, Yu H, Arnold W, Liaw P, Samwer K, Maass R 2017 Acta Mater. 138 111Google Scholar

    [19]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [20]

    Costa M B, Londoño J J, Blatter A, Hariharan A, Gebert A, Carpenter M A, Greer A L 2023 Acta Mater. 244 118551Google Scholar

    [21]

    Gao Y, Ding G, Yang C, Zhang B B, Shi C J, Dai L H, Jiang M Q 2023 J. Non-Cryst. Solids 615 122410Google Scholar

    [22]

    Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar

    [23]

    Sun Y H, Concustell A, Greer A L 2016 Nat. Rev. Mater. 1 16039Google Scholar

    [24]

    Liang S Y, Zhang L T, Wang B, Wang Y J, Yang Y, Pineda E, Qiao J C 2025 International Journal of Mechanical Sciences 302 110573Google Scholar

    [25]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546Google Scholar

    [26]

    Wu Y, Ertekin E, Sehitoglu H 2017 Acta Mater. 135 158Google Scholar

    [27]

    Xing G H, Hao Q, Lü G J, Zhu F, Wang Y J, Yang Y, Pineda E, Qiao J C 2025 J. Mater. Sci. Technol. 218 135Google Scholar

    [28]

    Zhang L T, Wang Y J, Yang Y, Wada T, Kato H, Qiao J C 2024 Int. J. Mech. Sci. 281 109661Google Scholar

    [29]

    Khonik V, Kobelev N 2019 Metal 9 605Google Scholar

    [30]

    Qiao J C, Chen Y X, Pelletier J M, Kato H, Crespo D, Yao Y, Khonik V A 2018 Mater. Sci. Eng. 719 164Google Scholar

    [31]

    Wang Z, Wang W H 2019 Nat. Sci. Rev. 6 304Google Scholar

    [32]

    Şopu D 2023 J. Alloys Compd. 960 170585Google Scholar

    [33]

    Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876Google Scholar

    [34]

    Schuh C A, Lund A C, Nieh T G 2004 Acta Mater. 52 5879Google Scholar

    [35]

    Yu P F, Feng S D, Xu G S, Guo X L, Wang Y Y, Zhao W, Qi L, Li G, Liaw P K, Liu R P 2014 Scr. Mater. 90 45Google Scholar

    [36]

    Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M, Qiao J C 2024 Int. J. Fatigue 187 108446Google Scholar

    [37]

    Liang S Y, Zhu F, Wang Y J, Pineda E, Wada T, Kato H, Qiao J C 2024 Int. J. Eng. Sci. 205 104146Google Scholar

    [38]

    Castellero A, Moser B, Uhlenhaut D I, Torre F H D, Löffler J F 2008 Acta Mater. 56 3777Google Scholar

    [39]

    Yuan C C, Lv Z W, Li X, Pang C M, Liu R, Yang C, Ma J, Zhu W W, Huang B, Ke H B 2023 Intermetallics 153 107803Google Scholar

    [40]

    Zhang L T, Wang Y J, Nabahat M, Pineda E, Yang Y, Pelletier J M, Crespo D, Qiao J C 2024 Int. J. Plast. 174 103923Google Scholar

    [41]

    Zhang L T, Wang Y J, Pineda E, Kato H, Yang Y, Qiao J C 2022 Scr. Mater. 214 114673Google Scholar

    [42]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81Google Scholar

    [43]

    Ge T P, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 204905Google Scholar

    [44]

    Tsai P, Kranjc K, Flores K M 2017 Acta Mater. 139 11Google Scholar

    [45]

    Zella L, Moon J, Keffer D, Egami T 2022 Acta Mater. 239 118254Google Scholar

    [46]

    Monnier X, Cangialosi D, Ruta B, Busch R, Gallino I 2020 Sci. Adv. 6 eaay1454Google Scholar

    [47]

    Luo Q, Zhang Z, Li D, Luo P, Wang W, Shen B 2022 Nano Lett. 22 2867Google Scholar

    [48]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar

  • [1] LIANG Shuyi, ZHANG Langting, ZHU Hangchen, XING Guanghui, QIAO Jichao. Coupling mechanism between high-temperature rheological behavior and dynamic relaxation in metallic glasses. Acta Physica Sinica, 2025, 74(13): 136401. doi: 10.7498/aps.74.20250392
    [2] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [3] Cheng Qi, Sun Yong-Hao, Wang Wei-Hua. Top-view analysis of ultrafast differential scanning calorimetry data. Acta Physica Sinica, 2024, 73(7): 078101. doi: 10.7498/aps.73.20232027
    [4] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [5] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [6] Jiang Wen-Long. Mechanism and quantitative study of specific heat change during glass transition of amorphous polystyrene and Pd40Ni10Cu30P20. Acta Physica Sinica, 2020, 69(12): 126401. doi: 10.7498/aps.69.20200331
    [7] Wu Zhen-Wei, Wang Wei-Hua. Linking local connectivity to atomic-scale relaxation dynamics in metallic glass-forming systems. Acta Physica Sinica, 2020, 69(6): 066101. doi: 10.7498/aps.69.20191870
    [8] Jin Xiao, Wang Li-Min. Enthalpy relaxation studies of memory effect in various glass formers in the vicinity of glass transition. Acta Physica Sinica, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [9] Tang Yi-Wei, Ai Liang, Cheng Yun, Wang An-An, Li Shu-Guo, Jia Ming. Relaxation behavior simulation of power lithium-ion battery in high-rate charging-discharging process. Acta Physica Sinica, 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [10] Jin Xin-Xin, Jin Feng, Liu Ning, Sun Qi-Cheng. Analysis of elastic energy relaxation process for granular materials at quasi-static state. Acta Physica Sinica, 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [11] Sun Qi-Cheng, Liu Chuan-Qi, Gordon G D Zhou. Relaxation of granular elasticity. Acta Physica Sinica, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [12] Lu Min, Xu Wei-Bing, Liu Wei-Qing, Hou Chun-Ju, Liu Zhi-Yong. An atomistic simulation on melting and breaking relaxation characteristics of Ag nanorods at high temperature. Acta Physica Sinica, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [13] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical computation and numerical simulation of the relaxation of sphere-capillary model saturated with oil and water. Acta Physica Sinica, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [14] Zhou Zheng-Cun, Zhao Hong-Ping, Gu Su-Yi, Wu Qian. Relaxation resulting from atomic defects in quenched Fe-Al alloys. Acta Physica Sinica, 2008, 57(2): 1025-1029. doi: 10.7498/aps.57.1025
    [15] Wang Hai-Long, Wang Xiu-Xi, Wang Yu, Liang Hai-Yi. Molecular dynamics simulation of deformation-induced crystallization mechanism in amorphous Ti3Al alloy. Acta Physica Sinica, 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [16] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [17] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical description and numerical computation of the relaxation of multi-spin system in the presence of an RF field. Acta Physica Sinica, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [18] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [19] . Acta Physica Sinica, 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
    [20] Zhou Xiao-Feng, Tao Shu-Fen, Liu Zuo-Quan, Kan Jia-De, Li Hai-Yang. . Acta Physica Sinica, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
Metrics
  • Abstract views:  3151
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2025
  • Accepted Date:  29 May 2025
  • Available Online:  11 June 2025
  • Published Online:  20 August 2025
  • /

    返回文章
    返回