Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling and performance characterization methods of half-Heusler thermoelectric devices

ZHANG Yuqian NIU Chunping HE Hailong REN Hongrui WU Yi

Citation:

Modeling and performance characterization methods of half-Heusler thermoelectric devices

ZHANG Yuqian, NIU Chunping, HE Hailong, REN Hongrui, WU Yi
cstr: 32037.14.aps.74.20250625
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Due to the ability to directly convert thermal energy into electrical energy, thermoelectric devices operating in the medium-to-high temperature range hold significant potential for applications such as deep space exploration and industrial waste heat recovery. Among candidate materials, half-Heusler alloys have emerged as promising options for device fabrication in this temperature range, owing to their excellent mechanical properties, thermal stability, and favorable thermoelectric performance. However, research on half-Heusler-based thermoelectric devices remains far behind study of the materials, which limits their large-scale industrial application. In this study, high-performance P-type Hf0.5Zr0.5CoSb0.8Sn0.2 and N-type Hf0.75Zr0.25NiSn0.99Sb0.01 half-Heusler alloys are firstly synthesized. Then the single-pair thermoelectric module is successfully brazed and assembled by using the graphite mold designed by ourselves. After that, three-dimensional (3D) finite element modeling and one-dimensional (1D) numerical modeling are conducted to simulate the module behaviors, and their results are highly consistent with experimental measurements, thereby validating the accuracy of the simulation models. Using the established simulation models, the influence of geometric parameters on module performance is investigated. The result shows that optimizing the leg height and cross-sectional area ratio is critical for achieving maximum conversion efficiency. Additionally, a self-integrated comprehensive testing system (Model: TE-X-MS) is developed to systematically characterize key thermoelectric properties, including output power and conversion efficiency. The fabricated device achieves a maximum output power of 0.28 W and a peak conversion efficiency of 7.34% at a temperature difference of 538 K, which is comparable to the best-performing devices reported to date. These results provide valuable reference for fabricating, modeling, and characterizing the half-Heusler thermoelectric devices in practical applications.
      Corresponding author: HE Hailong, hhlong@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52177159), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. xzy012023163), and the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant Nos. EIPE23305, EIPE23132, EIPE24207).
    [1]

    王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先 2020 物理学报 69 246801Google Scholar

    Wang Y N, Chen S P, Fan W H, Guo J Y, Wu Y C, Wang W X 2020 Acta Phys. Sin. 69 246801Google Scholar

    [2]

    杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚 2023 物理学报 72 228401Google Scholar

    Yang S G, Lin X, He J S, Zhai L J, Chen L, Lü M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401Google Scholar

    [3]

    谢忠祥, 喻霞, 贾聘真, 陈学坤, 邓元祥, 张勇, 周五星 2023 物理学报 72 124401Google Scholar

    Xie Z X, Yu X, Jia P Z, Chen X K, Deng Y X, Zhang Y, Zhou W X 2023 Acta Phys. Sin. 72 124401Google Scholar

    [4]

    He H L, Fang Z X, Niu C P, Wu Y, Rong M Z 2021 Energy Convers. Manag. 241 114314Google Scholar

    [5]

    Yu K, Wu Y, He H L, Niu C P, Rong M Z, Wu D, Liu S X, Zhang Y Q 2021 J. Alloys Compd. 885 161378Google Scholar

    [6]

    Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2021 Chin. Phys. B 30 128401Google Scholar

    [7]

    许易, 许小言, 张薇, 欧阳滔, 唐超 2019 物理学报 68 247202Google Scholar

    Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202Google Scholar

    [8]

    Lu J Y, Cui C F, Ouyang T, Li J, He C Y, Tang C, Zhong J X 2023 Chin. Phys. B 32 048401Google Scholar

    [9]

    Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 Chin. Phys. B 29 118401Google Scholar

    [10]

    Ovik R, Long B D, Barma M C, Riaz M, Sabri M F M, Said S M, Saidur R 2016 Renewable Sustainable Energy Rev. 64 635Google Scholar

    [11]

    Eddine A N, Chalet D, Faure X, Faure X, Chessé P 2018 Energy 143 682Google Scholar

    [12]

    Haddad C, Périlhon C, Danlos A, François M X, Descombes G 2014 Energy Procedia 50 1056Google Scholar

    [13]

    Shen Z G, Tian L L, Liu X 2019 Energy Convers. Manag. 195 1138Google Scholar

    [14]

    Holgate T C, Bennett R, Hammel T, Caillat T, Keyser S, Sievers B 2015 J. Electron. Mater. 44 1814Google Scholar

    [15]

    柏胜强, 廖锦城, 夏绪贵, 陈立东 2020 深空探测学报 7 525Google Scholar

    Bai S Q, Liao J C, Xia X G, Chen L D 2020 J. Deep Space Explor. 7 525Google Scholar

    [16]

    Xiao Y, Zhao L D 2018 npj Quantum Mater. 3 55Google Scholar

    [17]

    Rogl G, Rogl P 2017 Curr. Opin. Green Sustainable Chem. 4 50Google Scholar

    [18]

    Huang L H, Zhang Q Y, Yuan B, Xiang L, Yan X, Ren Z F 2016 Mater. Res. Bull. 76 107Google Scholar

    [19]

    Gelbstein Y, Gotesman G, Lishzinker Y, Dashevsky Z, Dariel M P 2008 Scr. Mater. 58 251Google Scholar

    [20]

    Rull-Bravo M, Moure A, Fernández J F, Martín-González M 2015 RSC Adv. 5 41653Google Scholar

    [21]

    Rogl G, Grytsiv A, Gürth M, Tavassoli A, Ebner C, Wünschek A, Puchegger S, Soprunyuk V, Schranz W, Bauer E, Müller H, Zehetbauer M, Rogl P 2016 Acta Mater. 107 178Google Scholar

    [22]

    Silpawilawan W, Kurosaki K, Ohishi Y, Muta H, Yamanaka S 2017 J. Mater. Chem. C 5 6677Google Scholar

    [23]

    Poon S J 2018 Metals 8 989Google Scholar

    [24]

    He H L, Zhao Y B, Ren H R, Niu C P, Fang Z X, Wu Y, Rong M Z 2022 Appl. Therm. Eng. 215 118900Google Scholar

    [25]

    Nozariasbmarz A, Saparamadu U, Li W, Kang H B, Dettor C, Zhu H T, Poudel B, Priya S 2021 J. Power Sources 493 229695Google Scholar

    [26]

    Yu J J, Xing Y F, Hu C L, Huang Z J, Qiu Q Y, Wang C, Xia K Y, Wang Z Y, Bai S Q, Zhao X B, Chen L D, Zhu T J 2020 Adv. Energy Mater. 10 2000888Google Scholar

    [27]

    Xing Y F, Liu R H, Liao J C, Zhang Q H, Xia X G, Wang C, Huang H, Chu J, Gu M, Zhu T J, Zhu C X, Xu F F, Yao D X, Zeng Y P, Bai S Q, Uher C, Chen L D 2019 Energy Environ. Sci. 12 3390Google Scholar

    [28]

    苗圃, 韩屾, 高梓恒, 付晨光, 朱铁军 2022 中国材料进展 41 1029Google Scholar

    Miao P, Han S, Gao Z H, Fu C G, Zhu T J 2022 Mater. Chin. 41 1029Google Scholar

    [29]

    Moh'd A A N, Tashtoush B M, Jaradat A A 2015 Energy 90 1239Google Scholar

    [30]

    Chen W H, Huang S R, Wang X D, Wu P H, Lin Y L 2017 Energy 133 257Google Scholar

    [31]

    Meng F K, Chen L G, Sun F R 2016 Low-Carbon Technol. 11 375Google Scholar

    [32]

    Ouyang Z, Li D 2016 Sci. Rep. 6 24123Google Scholar

  • 图 1  (a) 半赫斯勒热电臂制作流程; (b) 合成材料的热电优值ZT; (c) 单对半赫斯勒热电器件焊接流程

    Figure 1.  (a) Fabrication process of half-Heusler thermoelectric legs; (b) the ZT values of the synthesized materials; (c) the soldering process of the single-pair half-Heusler thermoelectric device.

    图 2  (a) P型和(b) N型半赫斯勒热电材料XRD图谱

    Figure 2.  XRD patterns of (a) P-type and (b) N-type half-Heusler thermoelectric.

    图 3  单对器件三维建模图

    Figure 3.  Schematic diagram of 3D modeling of single pair device.

    图 4  三维仿真得到的单对半赫斯勒器件温度分布图(a)和电势分布图(b)

    Figure 4.  Temperature (a) and voltage (b) distribution diagram of single pair half-Heusler thermoelectric device obtained from 3D simulation.

    图 6  自制热电器件综合性能测试系统

    Figure 6.  Self-made comprehensive performance testing system for thermoelectric devices.

    图 7  热端温度分别为300 ℃, 400 ℃, 500 ℃, 600 ℃时单对器件在不同电流负载下的特性变化 (a) 电压; (b) 输出功率; (c) 转换效率. (d) 本文不同温差下的最大转换效率与其他文献中报道的半赫斯勒器件的最大效率的对比

    Figure 7.  Characteristic curves of a single pair of devices under different current loads when the hot end temperatures are 300 ℃, 400 ℃, 500 ℃ and 600 ℃ respectively: (a) Voltage; (b) output power; (c) conversion efficiency. (d) Comparison between the maximum conversion efficiency under different temperature differences in this work and other literatures.

    图 5  随热电臂高度和P型N型热电臂面积比(AP/AN)变化而变化的单对器件(a) 转换效率和(b) 输出功率

    Figure 5.  Variation of conversion efficiency (a) and output power (b) of a single pair of devices with variation of thermoelectric arm height and P-type/N-type thermoelectric arm area ratio (AP/AN).

    表 1  单对器件建模参数

    Table 1.  Single pair device’s modeling parameters.

    参 数数 值
    陶瓷基板长度Ls/mm8
    陶瓷基板宽度Ws/mm3
    陶瓷基板厚度Ds/mm0.6
    覆铜层长度LCu/mm7
    覆铜层宽度WCu/mm3
    覆铜层厚度DCu/mm0.3
    P型热电臂宽度Wp/mm2.1
    P型热电臂高度Hp/mm6
    N型热电臂宽度Wn/mm2
    N型热电臂宽度Hn/mm6
    DownLoad: CSV

    表 2  热电材料物性参数

    Table 2.  Physical parameters of thermoelectric materials.

      参数 温度相关表达式
    P型 S/(μV·K–1) $-2.37478\times 10^{-13}T^3+2.00399\times 10^{-10} T^2 + 1.45119\times 10^{-7} T + 0.0000646145 $
    σ/(S⋅cm–1) $-6.40884\times 10^{-9}T^3+0.0000127913T^2 -0.00898933T + 6.35472 $
    κ/(W⋅m–1⋅K–1) $-0.000461149T^3 + 1.02189T^2 -825.929T +327500.0 $
    N型 S/(μV⋅K–1) $2.37915\times 10^{-13}T^3 -1.39249\times 10^{-10}T^2 -2.14638\times 10^{-7} T -0.0000648974 $
    σ/(S⋅cm–1) $-1.25489\times 10^{-8} T^3 + 0.0000285845T^2 -0.0223619T +10.403 $
    κ/(W⋅m–1⋅K–1) $0.0000727835T^3 + 0.0782446T^2 -271.589T +266246.0$
    DownLoad: CSV
  • [1]

    王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先 2020 物理学报 69 246801Google Scholar

    Wang Y N, Chen S P, Fan W H, Guo J Y, Wu Y C, Wang W X 2020 Acta Phys. Sin. 69 246801Google Scholar

    [2]

    杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚 2023 物理学报 72 228401Google Scholar

    Yang S G, Lin X, He J S, Zhai L J, Chen L, Lü M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401Google Scholar

    [3]

    谢忠祥, 喻霞, 贾聘真, 陈学坤, 邓元祥, 张勇, 周五星 2023 物理学报 72 124401Google Scholar

    Xie Z X, Yu X, Jia P Z, Chen X K, Deng Y X, Zhang Y, Zhou W X 2023 Acta Phys. Sin. 72 124401Google Scholar

    [4]

    He H L, Fang Z X, Niu C P, Wu Y, Rong M Z 2021 Energy Convers. Manag. 241 114314Google Scholar

    [5]

    Yu K, Wu Y, He H L, Niu C P, Rong M Z, Wu D, Liu S X, Zhang Y Q 2021 J. Alloys Compd. 885 161378Google Scholar

    [6]

    Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2021 Chin. Phys. B 30 128401Google Scholar

    [7]

    许易, 许小言, 张薇, 欧阳滔, 唐超 2019 物理学报 68 247202Google Scholar

    Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202Google Scholar

    [8]

    Lu J Y, Cui C F, Ouyang T, Li J, He C Y, Tang C, Zhong J X 2023 Chin. Phys. B 32 048401Google Scholar

    [9]

    Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 Chin. Phys. B 29 118401Google Scholar

    [10]

    Ovik R, Long B D, Barma M C, Riaz M, Sabri M F M, Said S M, Saidur R 2016 Renewable Sustainable Energy Rev. 64 635Google Scholar

    [11]

    Eddine A N, Chalet D, Faure X, Faure X, Chessé P 2018 Energy 143 682Google Scholar

    [12]

    Haddad C, Périlhon C, Danlos A, François M X, Descombes G 2014 Energy Procedia 50 1056Google Scholar

    [13]

    Shen Z G, Tian L L, Liu X 2019 Energy Convers. Manag. 195 1138Google Scholar

    [14]

    Holgate T C, Bennett R, Hammel T, Caillat T, Keyser S, Sievers B 2015 J. Electron. Mater. 44 1814Google Scholar

    [15]

    柏胜强, 廖锦城, 夏绪贵, 陈立东 2020 深空探测学报 7 525Google Scholar

    Bai S Q, Liao J C, Xia X G, Chen L D 2020 J. Deep Space Explor. 7 525Google Scholar

    [16]

    Xiao Y, Zhao L D 2018 npj Quantum Mater. 3 55Google Scholar

    [17]

    Rogl G, Rogl P 2017 Curr. Opin. Green Sustainable Chem. 4 50Google Scholar

    [18]

    Huang L H, Zhang Q Y, Yuan B, Xiang L, Yan X, Ren Z F 2016 Mater. Res. Bull. 76 107Google Scholar

    [19]

    Gelbstein Y, Gotesman G, Lishzinker Y, Dashevsky Z, Dariel M P 2008 Scr. Mater. 58 251Google Scholar

    [20]

    Rull-Bravo M, Moure A, Fernández J F, Martín-González M 2015 RSC Adv. 5 41653Google Scholar

    [21]

    Rogl G, Grytsiv A, Gürth M, Tavassoli A, Ebner C, Wünschek A, Puchegger S, Soprunyuk V, Schranz W, Bauer E, Müller H, Zehetbauer M, Rogl P 2016 Acta Mater. 107 178Google Scholar

    [22]

    Silpawilawan W, Kurosaki K, Ohishi Y, Muta H, Yamanaka S 2017 J. Mater. Chem. C 5 6677Google Scholar

    [23]

    Poon S J 2018 Metals 8 989Google Scholar

    [24]

    He H L, Zhao Y B, Ren H R, Niu C P, Fang Z X, Wu Y, Rong M Z 2022 Appl. Therm. Eng. 215 118900Google Scholar

    [25]

    Nozariasbmarz A, Saparamadu U, Li W, Kang H B, Dettor C, Zhu H T, Poudel B, Priya S 2021 J. Power Sources 493 229695Google Scholar

    [26]

    Yu J J, Xing Y F, Hu C L, Huang Z J, Qiu Q Y, Wang C, Xia K Y, Wang Z Y, Bai S Q, Zhao X B, Chen L D, Zhu T J 2020 Adv. Energy Mater. 10 2000888Google Scholar

    [27]

    Xing Y F, Liu R H, Liao J C, Zhang Q H, Xia X G, Wang C, Huang H, Chu J, Gu M, Zhu T J, Zhu C X, Xu F F, Yao D X, Zeng Y P, Bai S Q, Uher C, Chen L D 2019 Energy Environ. Sci. 12 3390Google Scholar

    [28]

    苗圃, 韩屾, 高梓恒, 付晨光, 朱铁军 2022 中国材料进展 41 1029Google Scholar

    Miao P, Han S, Gao Z H, Fu C G, Zhu T J 2022 Mater. Chin. 41 1029Google Scholar

    [29]

    Moh'd A A N, Tashtoush B M, Jaradat A A 2015 Energy 90 1239Google Scholar

    [30]

    Chen W H, Huang S R, Wang X D, Wu P H, Lin Y L 2017 Energy 133 257Google Scholar

    [31]

    Meng F K, Chen L G, Sun F R 2016 Low-Carbon Technol. 11 375Google Scholar

    [32]

    Ouyang Z, Li D 2016 Sci. Rep. 6 24123Google Scholar

  • [1] Li Qi-Zhu, Fan Hao-Han, Gao Zi-Heng, Nan Peng-Fei, Zhu Tie-Jun, Ge Bing-Hui. Nb0.8CoSb ordering transformation caused by in situ heating-induced Nb diffusion. Acta Physica Sinica, 2024, 73(11): 116401. doi: 10.7498/aps.73.20240325
    [2] Lin Qian, Xie Pu-Chu, Hu Jian-Bo, Zhang Feng-Guo, Wang Pei, Wang Yong-Gang. Numerical simulation on dynamic damage evolution of high pure copper with different grain sizes. Acta Physica Sinica, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [3] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [4] Xu Xiao-Xiao, Wu Yang-Yang, Liu Chao, Wang Kai-Zheng, Ye Jian. Numerical study of cooling heat transfer of supercritical carbon dioxide in a horizontal helically coiled tube. Acta Physica Sinica, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [5] Wang Ping, Yin Yu-Zhen, Shen Sheng-Qiang. Numerical study of convection heat transfer in ordered three-dimensional porous media. Acta Physica Sinica, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [6] Wang Zhe, Wang Fa-Zhan, Wang Xin, He Yin-Hua, Ma Shan, Wu Zhen. Three-dimensional modelling and numerical simulation on segregation during Fe-Pb alloy solidification in a multiphase system. Acta Physica Sinica, 2014, 63(7): 076101. doi: 10.7498/aps.63.076101
    [7] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [8] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [9] Li Yun, Sun Hua. Design and simulation of a spherical electromagnetic reshaper with a split -ring- resonator microstructure. Acta Physica Sinica, 2011, 60(9): 094103. doi: 10.7498/aps.60.094103
    [10] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [11] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [12] Wang Xiao-Nan, Di Hong-Shuang, Liang Bing-Jie, Xia Xiao-Ming. Three-dimensional numerical simulation of the edger and corner metal’s flow on edging rolling on roughing of hot continuous rolling process. Acta Physica Sinica, 2009, 58(13): 84-S88. doi: 10.7498/aps.58.84
    [13] Hu Yue, Rao Hai-Bo. Numerical simulation of electrical transport characteristics of single layer organic devices. Acta Physica Sinica, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [14] Wang Kuang-Fei, Guo Jing-Jie, Mi Guo-Fa, Li Bang-Sheng, Fu Heng-Zhi. Numerical simulation of microstructure evolution during directional solidification of Ti-45at.%Al alloy. Acta Physica Sinica, 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [15] Hu Yue, Rao Hai-Bo, Li Jun-Fei. Numerical model of ITO /organic semiconductor/metal organic light emitting device. Acta Physica Sinica, 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
    [16] Zhao Yan, Shen Zhong-Hua, Lu Jian, Ni Xiao-Wu. Finite element simulation of laser-generated circumferential waves in hollow cylinder. Acta Physica Sinica, 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [17] Jiang Hui-Feng, Zhang Qing-Chuan, Chen Zhong-Jia, Wu Xiao-Ping. Numerical simulation of the Portevin-Le Chatelier effect in annealed aluminum alloys. Acta Physica Sinica, 2006, 55(6): 2856-2859. doi: 10.7498/aps.55.2856
    [18] Zhu Chang-Sheng, Wang Zhi-Ping, Jing Tao, Xiao Rong-Zhen. Numerical simulation of solute segregation patterns for a binary alloy using phase-field approach. Acta Physica Sinica, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [19] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [20] Ding Bo-Jiang, Kuang Guang-Li, Liu Yue-Xiu, Shen Wei-Ci, Yu Jia-Wen, Shi Yao-Jiang. . Acta Physica Sinica, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
Metrics
  • Abstract views:  2510
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2025
  • Accepted Date:  07 June 2025
  • Available Online:  19 June 2025
  • Published Online:  20 August 2025
  • /

    返回文章
    返回