Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low grazing angle reflection and shear-wave resonance on elastic-solid sediment

XIE Jinhuai ZHANG Haigang CAO Dejin

Citation:

Low grazing angle reflection and shear-wave resonance on elastic-solid sediment

XIE Jinhuai, ZHANG Haigang, CAO Dejin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The low-grazing-angle reflection on elastic sediment seabed exhibits abnormally enhanced frequency characteristics, which significantly influences long-range sound propagation in shallow water. To study the influence of elastic sedimentary layer seabed environment on long-range sound propagation in shallow waters, we conduct a joint measurement of seabed and waveguide sound propagation in the Dongsha area of the South China Sea. The measurements show for the first time that the seabed resonance and the sound siphon effect occur simultaneously. Notably, this effect is different from the sound siphon effect observed in low-sound-speed seabed environments, as it exhibits smaller frequency intervals. By analyzing the low-grazing-angle reflection characteristics of the elastic seabed, we develop a theoretical model for the resonance frequencies of shear waves in elastic sediment layers under small grazing angles and investigate their influence on long-range sound propagation. The results indicate that under an elastic seabed model, the low-grazing-angle reflection modulated by shear waves induces resonance at specific frequencies within the sediment layer. This trap acoustic energy in the seabed, leading to the sound siphon effect. Furthermore, we analyze the sensitivity and coupling of key parameters related to the resonance frequency of shear wave. According to these findings, we develop an inversion strategy that integrates seabed and waveguide observations to estimate geo-acoustic parameters of the experimental area. The inversion results validate the mechanism by which the elastic seabed model contributes to the sound siphon effect in the water column.
  • 图 1  实验环境及示意图 (a)声传播实验区域地形及接收设备的位置; (b)海底与波导声传播同步测量实验示意图

    Figure 1.  Experimental environment and schematic diagram: (a) Topography of sound propagation experiment area and location of receiver; (b) schematic diagram of synchronous measurement experiment of sound propagation in seabed and waveguide.

    图 2  邻近海域多道地震剖面反演结果

    Figure 2.  Seabed profile inversion using multichannel seismic data in adjacent areas.

    图 3  海底OBS测量的振速信号 (a)声源与OBS距离16.46 km的归一化频谱, 水平质点振速的径向(顶部)和横向(中部)分量, 垂直质点振速分量(底部); (b)距离OBS 2.7—24.8 km范围内15个爆炸声源信号的平均PSD

    Figure 3.  Particle velocity signal measured by OBS: (a) Normalized spectrum of a sound source and OBS at a distance of 16.46 km, normalized spectra of the radial (top) and cross-range (middle) components of the horizontal particle velocity, as well as vertical particle velocity (bottom); (b) the power spectral density averages 15 explosion sound source signals within the 2.7–24.8 km range from the OBS.

    图 4  VLA测量的爆炸声信号 (a)声源与VLA距离19.2—50.0 km范围的PSD, 其中每个距离的PSD级采用VLA所有阵元数据的平均结果; (b)声源与VLA距离20.8 km的PSD

    Figure 4.  Explosion sound signal measured by VLA: (a) PSD within the range of 19.2–50.0 km from the sound source and VLA, where the PSD of each distance is the average result of all array metadata of the VLA; (b) PSD with a distance of 20.8 km between the sound source and the VLA.

    图 5  三个不同距离声源的20—150 Hz频段的PSD在37 Hz存在能量凹陷

    Figure 5.  The PSD of the 20~150 Hz frequency band has an energy depression at 37 Hz.

    图 6  弹性沉积层海底地声模型

    Figure 6.  Submarine geo-acoustic model of elastic sedimentary layer.

    图 7  海底反射损失与频率的关系, 其中反射损失是利用Porter[26]的BOUNCE程序计算获得 (a)低声速液态沉积层海底的地声参数见表1; (b)弹性沉积层海底的地声参数如表2; (c)高声速液态沉积海底采用了表2中除了剪切波参数以外的所有参数

    Figure 7.  Relationship between seabed reflection loss and frequency. Porter’s BOUNCE program calculates the reflection loss: (a) The geo-acoustic parameters of the seabed of low-velocity liquid sediments are shown in Table 1; (b) geo-acoustic parameters of elastic sedimentary seabed are shown in Table 2; (c) all the parameters except the shear wave parameters in Table 2 are used in the high-velocity liquid deposition seabed.

    图 8  弹性海底低掠射角反射与剪切波共振的频率关系. 绿色、蓝色和黑色曲线分别表示掠射角为2°, 5°和10°的反射损失曲线; 红色圆圈是沉积层剪切波共振频率((8)式)

    Figure 8.  Frequency relationship between low grazing angle reflection and shear wave resonance in elastic seabed. The green, blue, and black curves represent the reflection loss curves for grazing angles of 2°, 5°, and 10°, respectively; the red circle is the shear wave resonance frequency (Eq. (8)).

    图 9  传播损失的频率特征, 其中声源深度为50 m, 接收深度为80 m (a)低声速液态沉积层海底; (b)弹性沉积层海底; (c)高声速液态海底

    Figure 9.  Frequency characteristics of propagation loss, where the sound source depth is 50 m, and the receiving depth is 80 m: (a) Low-velocity liquid sediments seabed; (b) the elastic sedimentary seabed; (c) the high-velocity liquid seabed.

    图 10  剪切波波共振频率小掠射角反射损失特征的敏感性分析 (a)底部反射损失与剪切波衰减的关系, 同一环境取低掠射角($\theta < \arccos \left( {{{{c_1}} \mathord{\left/ {\vphantom {{{c_1}} {{c_{{\text{p2}}}}}}} \right. } {{c_{{\text{p2}}}}}}} \right)$)的反射损失极大值; (b)共振频率263.1 Hz对剪切波衰减的敏感性; (c)共振频率263.1 Hz对基底剪切波衰减的敏感性; (d)共振频率263.1 Hz对纵波衰减的敏感性

    Figure 10.  Sensitivity analysis of small grazing angle reflection loss characteristics of shear wave resonance frequency: (a) Relationship between bottom reflection loss and shear wave attenuation, and the maximum reflection loss of low grazing angle ($\theta < $$ \arccos \left( {{{{c_1}} \mathord{\left/ {\vphantom {{{c_1}} {{c_{{\text{p2}}}}}}} \right. } {{c_{{\text{p2}}}}}}} \right)$) is taken in the same environment; (b) sensitivity of the resonance frequency 263.1 Hz to the shear wave attenuation: (c) sensitivity of the resonance frequency 263.1 Hz to the base shear wave attenuation; (d) sensitivity of the resonance frequency 263.1 Hz to the longitudinal wave attenuation.

    图 11  剪切波共振频率闭式表达式的耦合关系

    Figure 11.  Coupling relationship of shear wave resonance frequency closed-form expression.

    图 12  (a) OBS接收的振速信号水平分量和垂直分量的时域波形, 该声源距离OBS 19.82 km; (b)利用复声强法计算的0—20 km声源的俯仰角

    Figure 12.  (a) Time domain waveforms of the horizontal and vertical components of the particle velocity signal received by the OBS. The sound source is 19.82 km away from the OBS; (b) the elevation angle of 0–20 km sound source is calculated by using the complex sound intensity method.

    图 13  反演策略

    Figure 13.  Inversion strategy.

    图 14  实际波导环境的弹性沉积层海底参数敏感性分析, 红色虚线为真值

    Figure 14.  Sensitivity analysis of seabed parameters of elastic sediment layer in actual waveguide environment, Red dotted line is true value.

    图 15  根据反演结果计算的50—250 Hz频段传播损失与实验测量得到的传播损失结果对比 (a)声源与VLA的距离20.8 km; (b)声源与VLA的距离24.99 km

    Figure 15.  Propagation loss in the 50–250 Hz band calculated from the inversion results is compared with the experimental measurement: (a) Distance from a sound source to VLA is 20.8 km; (b) from the sound source to VLA is 24.99 km.

    表 1  低声速沉积层海底的声学参数

    Table 1.  Acoustic parameters of low sound velocity sediment seabed.

    海底声学参数 压缩波声速/${\text{(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$ 层厚/${\text{m}}$ 密度/${\text{(g}} {\cdot} {\text{c}}{{\text{m}}^{{{ - 3}}}})$ 压缩波衰减/${\text{(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$
    水介质层 1499 100 1.0 0
    沉积层 1465 15 1.6 0.1
    基底 1650 1.9 0.2
    DownLoad: CSV

    表 2  弹性沉积层海底参数

    Table 2.  Acoustic parameters of elastic sediment seabed.

    声学参数压缩波声速/${\text{(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$剪切波声速/${\text{(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$层厚/${\text{m}}$密度/${\text{(g}} {\cdot} {\text{c}}{{\text{m}}^{{{ - 3}}}})$压缩波衰减/${\text{(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$剪切波衰减/${\text{(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$
    水层14991001.00
    沉积层1600700151.60.10.1
    基底280016002.20.20.2
    DownLoad: CSV

    表 3  弹性沉积层海底地声参数反演结果

    Table 3.  Inversion results of seafloor geoacoustic parameters of the elastic sedimentary layer.

    反演参数寻优区间反演结果
    沉积层${c_{{\text{p2}}}}{\text{/(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$1550—18001640.7
    ${c_{{\text{s2}}}}{\text{/(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$500—800681.0
    $h{\text{/m}}$2—4014.5
    ${\rho _{2}}{\text{/(g}} {\cdot} {\text{c}}{{\text{m}}^{{{ - 3}}}})$1.55—2.11.65
    ${\alpha _{{\text{p2}}}}{\text{/(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$0.05—0.50.14
    ${\alpha _{{\text{s2}}}}{\text{/(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$0.05—0.50.11
    基底${c_{{\text{p3}}}}{\text{/(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$1850—30002476
    ${c_{{\text{s3}}}}{\text{/(m}} {\cdot} {{\text{s}}^{{{ - 1}}}})$1510—18001757.6
    ${\rho _3}{\text{/(g}} {\cdot} {\text{c}}{{\text{m}}^{{{ - 3}}}})$2.15—4.03.5
    ${\alpha _{{\text{p3}}}}{\text{/(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$0.1—0.60.22
    ${\alpha _{{\text{s3}}}}{\text{/(dB}} {\cdot} {\lambda ^{{{ - 1}}}})$0.1—0.60.29
    DownLoad: CSV
  • [1]

    Katsnelson B, Petnikov V, Lynch J 2012 Fundamentals of Shallow Water Acoustics (New York: Springer Press) p65

    [2]

    Duncan A J, Gavrilov A N, McCauley R D, Parnum I M, Collis J M 2013 J. Acoust. Soc. Am. 134 207Google Scholar

    [3]

    Godin O A 2021 J. Acoust. Soc. Am. 149 3586Google Scholar

    [4]

    Godin O A 2025 J. Acoust. Soc. Am. 157 314Google Scholar

    [5]

    张士钊, 朴胜春 2021 物理学报 70 214304Google Scholar

    Zhang S Z, Piao S C 2021 Acta Phys. Sin. 70 214304Google Scholar

    [6]

    Akal T, Berkson J 1986 Ocean Seismo-Acoustics: Low-Frequency Underwater Acoustic (New York & London: Nato Scientific Affairs Division Plenum Press) p149

    [7]

    Xie J H, Cao D J, Zhang H G 2024 Journal of Physics: Conference Series 2718 Changsha City, China, October 13–15, 2023 p 012070

    [8]

    Fokina M S, Fokin V N 2001 J. Comput. Acoust. 09 1079Google Scholar

    [9]

    Godin O A, Chapman D M F 1999 J. Acoust. Soc. Am. 106 2367Google Scholar

    [10]

    Godin O A, Deal T J, Dong H F 2021 J Acoust Soc Am. 149 49Google Scholar

    [11]

    Dall'Osto D R, Tang D J 2022 J. Acoust. Soc. Am. 151 3473Google Scholar

    [12]

    Kuperman W A, Jensen F B 1980 Bottom-Interacting Ocean Acoustics (New York: Plenum Press) p135

    [13]

    Hermand J P, Siderius M 1997 J. Acoust. Soc. Am. 102 3142

    [14]

    Wilson P S, Knobles D P, Neilsen T B 2020 IEEE J. Ocean. Eng. 45 1

    [15]

    Wilson P S, Knobles D P, Neilsen T B 2022 IEEE J. Oceanic Eng. 47 497Google Scholar

    [16]

    Zhou J X, Li Z L, Zhang X Z, Qin J X 2024 J. Acoust. Soc. Am. 155 3490Google Scholar

    [17]

    李梦竹, 李整林, 周纪浔, 张仁和 2019 物理学报 68 094301Google Scholar

    Li M Z, Li Z L, Zhou J X, Zhang R H 2019 Acta Phys. Sin. 68 094301Google Scholar

    [18]

    Zhou J X, Qin J X, Li Z L, Zhang X Z 2024 J. Acoust. Soc. Am. 156 1575Google Scholar

    [19]

    Hughes S J, Ellis D D, Chapman D M F, Philip R S 1990 J. Acoust. Soc. Am. 88 283Google Scholar

    [20]

    Hovem J M, Solberg C E, Tollefsen D 2001 Annual Conference of the Marine-Technology-Society Honolulu, HI, USA, November 5–8, 2001 p715

    [21]

    张海刚, 谢金怀, 王笑寒, 马志康 2024 声学学报 49 835Google Scholar

    Zhang H G, Xie J H, Wang X H, Ma Z K 2024 Acta Acustica 49 835Google Scholar

    [22]

    Zheng G X, Piao S C, Dong Y, Gong L J 2024 JASA Express Lett. 4 126004Google Scholar

    [23]

    李亮, 陈忠, 刘建国, 陈翰, 颜文, 仲义 2014 热带海洋学报 33 54Google Scholar

    Li L, Chen Z, Liu J G, Chen H, Yan W, Zhong Y 2014 J. Trop. Oceanogr. 33 54Google Scholar

    [24]

    Vanneste M, Madshus C, Socco V L, Maraschini M, Sparrevik P M, Westerdahl H, Duffaut K, Skomedal E, Bjørnara T I 2011 Geophys. J. Int. 185 221Google Scholar

    [25]

    Socco V L, Boiero D, Maraschini M, Vanneste M, Madshus C, Westerdahl H, Duffaut K, Skomedal E 2011 Geophys. J. Int. 185 237Google Scholar

    [26]

    Acoustics toolbox, Porter M B https://oalib-acoustics.org/ [2025-5-20]

    [27]

    Zhang R H, Li F H 1999 Sci. China, Ser. A Math. Phys. Astron. 42 739Google Scholar

    [28]

    Brekhovskikh L M, Godin O A 1998 Acoustics of Layered Media. 1: Plane and Quasi-Plane Waves (Vol. 2) (Berlin: Springer Press) p14

    [29]

    Kennedy J, Eberhart R 1995 IEEE Int Conf on Neural Networks Perth, WA, Australia, November 26–December 2, 1995 p1941

  • [1] Ma Rui-Rui, Chen Liu, Qiu Zhi-Yong. Theoretical studies of low-frequency shear Alfvén waves in reversed shear tokamak plasmas. Acta Physica Sinica, doi: 10.7498/aps.72.20230255
    [2] Li Ting, Bi Xiao-Yue, Kong Jing-Wen. Mechanical and thermal properties of phosphorene under shear deformation. Acta Physica Sinica, doi: 10.7498/aps.72.20230084
    [3] Chen Ming-Lai, Liu Hui, Zhang Yu, Luo Xiu-Juan, Ma Cai-Wen, Yue Ze-Lin, Zhao Jing. Spatial domain sparse reconstruction algorithm of sheared beam imaging. Acta Physica Sinica, doi: 10.7498/aps.71.20220494
    [4] Li Zhang-Long, Hu Chang-Qing, Zhao Mei, Qin Ji-Xing, Li Zheng-Lin, Yang Xue-Feng. Inversion of deep water geoacoustic parameters based on the seabed reflection characteristics of large grazing angles. Acta Physica Sinica, doi: 10.7498/aps.71.20211915
    [5] Hou Qian-Nan, Wu Jin-Rong. Simplification of roughness bottom backscattering model at small grazing angle in shallow-water. Acta Physica Sinica, doi: 10.7498/aps.68.20181475
    [6] Tang Han-Yu, Wang Na, Wu Xue-Bang, Liu Chang-Song. Wet granular matter mechanical spectroscopy under low-frequency shear. Acta Physica Sinica, doi: 10.7498/aps.67.20180966
    [7] Xing Yu-Heng, Xu Xi-Fang, Zhang Li-Fa. Topological phonons and phonon Hall effects. Acta Physica Sinica, doi: 10.7498/aps.66.226601
    [8] Liu Chen, Sun Hong-Xiang, Yuan Shou-Qi, Xia Jian-Ping, Qian Jiao. Acoustic focusing by thermoacoustic phased array. Acta Physica Sinica, doi: 10.7498/aps.66.154302
    [9] Lu Chang-Ming, Chen Ming-Lai, Luo Xiu-Juan, Zhang Yu, Liu Hui, Lan Fu-Yang, Cao Bei. Target reconstruction algorithm for four-beam sheared coherent imaging. Acta Physica Sinica, doi: 10.7498/aps.66.114201
    [10] Zhang Cheng-Bin, Yu Cheng, Liu Xiang-Dong, Jin Ou, Chen Yong-Ping. Steady deformation characteristics of double emulsion droplet in shear flow. Acta Physica Sinica, doi: 10.7498/aps.65.204704
    [11] Liu Zheng-Kun, Qiu Ke-Qiang, Chen Huo-Yao, Liu Ying, Xu Xiang-Dong, Fu Shao-Jun, Wang Chen, An Hong-Hai, Fang Zhi-Heng. Studies on soft X-ray shearing interferometry with double-frequency gratings. Acta Physica Sinica, doi: 10.7498/aps.62.070703
    [12] Jin Ye-Qing, Yao Xiong-Liang, Pang Fu-Zhen, Zhang A-Man. Vibro-acoustic characteristics of shear deformable stiffened laminated panels in mean flow. Acta Physica Sinica, doi: 10.7498/aps.62.134306
    [13] Sun Qi-Cheng, Zhang Guo-Hua, Wang Bo, Wang Guang-Qian. Shear modulus of semi-flexible networks in two dimensions. Acta Physica Sinica, doi: 10.7498/aps.58.6549
    [14] Yu Hui, Jiang Xiao-Qing, Yang Jian-Yi, Qi Wei, Wang Ming-Hua. Characteristic of a narrow beam under the grazing reflection condition. Acta Physica Sinica, doi: 10.7498/aps.57.4208
    [15] Ruan Kai, Zhang Chun-Min, Zhao Bao-Chang. Exact calculation of the optical path difference and lateral displacement of modified large optical path difference Sagnac interferometer in full view field used in upper atmospheric wind field measurement. Acta Physica Sinica, doi: 10.7498/aps.57.5435
    [16] Zhou Bing-Qing, Liu Feng-Zhen, Zhu Mei-Fang, Zhou Yu-Qin, Wu Zhong-Hua, Chen Xing. Studies on surface roughness and growth mechanisms of microcrystalline silicon films by grazing incidence X-ray reflectivity. Acta Physica Sinica, doi: 10.7498/aps.56.2422
    [17] Hu Jian-Bo, Yu Yu-Ying, Dai Cheng-Da, Tan Hua. Shear modulus of aluminum under shock loading. Acta Physica Sinica, doi: 10.7498/aps.54.5750
    [18] Sun Ke-Xu, Yi Rong-Qing, Yang Guo-Hong, Jiang Shao-En, Cui Yan-Li, Liu Shen-Ye, Ding Yong-Kun, Cui Ming-Qi, Zhu Pei-Ping, Zhao Yi-Dong, Zhu Jie, Zheng Lei, Zhang Jing-He. The reflectance calibration of soft x-ray planar mirror with different grazing angle. Acta Physica Sinica, doi: 10.7498/aps.53.1099
    [19] SONG YUAN-HONG, WANG YOU-NIAN, GOND YE. GRAZING SCATTERING AND ENERGY LOSS OF H+ MOVING NEAR A SOLID SURFACE. Acta Physica Sinica, doi: 10.7498/aps.48.1275
    [20] FU XIN-YU, DONG JIA-QI, YING CHUN-TONG, LIU GUANG-JUN. PARTICLE TRANSPORT FROM TURBULENCE DRIVEN BY-PARALLEL VELOCITY SHEAR. Acta Physica Sinica, doi: 10.7498/aps.46.474
Metrics
  • Abstract views:  386
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2025
  • Accepted Date:  09 June 2025
  • Available Online:  21 June 2025
  • /

    返回文章
    返回