Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inversion of deep water geoacoustic parameters based on the seabed reflection characteristics of large grazing angles

Li Zhang-Long Hu Chang-Qing Zhao Mei Qin Ji-Xing Li Zheng-Lin Yang Xue-Feng

Citation:

Inversion of deep water geoacoustic parameters based on the seabed reflection characteristics of large grazing angles

Li Zhang-Long, Hu Chang-Qing, Zhao Mei, Qin Ji-Xing, Li Zheng-Lin, Yang Xue-Feng
PDF
HTML
Get Citation
  • The acquisition of geoacoustic parameters is of great significance in studying ocean acoustics. On the basis of deducing the seabed reflection coefficient under the layered absorbing medium, the influence of the absorption coefficient on the seabed reflection coefficient under the condition of large grazing angles is analyzed. The seabed reflection coefficient oscillates at a frequency. When it is equal to the reflection coefficient of the contact interface between seawater and sediment, the corresponding frequency point is defined as the 1/4 oscillation period frequency. At this frequency, the coupling degree between absorption coefficient of sedimentary layer and substrate geoacoustic parameters is less than those at other frequencies. In this paper, a stepwise optimization inversion method for deep water geoacoustic parameters is proposed based on the seabed reflection characteristics of large grazing angles. Firstly, the interference period of the seabed reflection coefficient is extracted by the correlation method, and the sound speed and thickness of the deposited layer are inverted by the interference period. The density is obtained from the inversion result of sound speed combined with Hamilton empirical formula. Secondly, the value of the absorption coefficient of the sedimentary layer is calculated by combining the search boundary of the substrate sound speed. The one-dimensional inversion of the substrate sound speed is realized by using the substrate reflection coefficient at 1/4 oscillation period frequency. Finally, the one-dimensional inversion of the absorption coefficient of the sedimentary layer is realized by using the seabed reflection coefficient at a half-wave layer frequency. The seabed reflection characteristics of large glancing angles are combined with stepwise inversion to reduce the coupling degree of the substrate sound speed and the absorption coefficient of the sedimentary layer. Experimental results show that the geoacoustic parameters retrieved by this method can be effectively applied to the prediction of propagation loss in a certain range under the condition of large grazing angle measurement.
      Corresponding author: Zhao Mei, zhaomei@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004414, 11874061).
    [1]

    杨坤德, 马远良 2009 物理学报 58 1798Google Scholar

    Yang K, Ma Y L 2009 Acta Phys. Sin. 58 1798Google Scholar

    [2]

    黎雪刚, 杨坤德, 张同伟, 等 2009 物理学报 58 7741Google Scholar

    Li X G, Yang K D, Zhang T W, et al. 2009 Acta Phys. Sin. 58 7741Google Scholar

    [3]

    周天, 李海森, 朱建军, 等 2014 物理学报 63 084302Google Scholar

    Zhou T, Li H S, Zhu J J, et al. 2014 Acta Phys. Sin. 63 084302Google Scholar

    [4]

    李赫, 郭新毅, 马力 2019 物理学报 63 214303Google Scholar

    Li H, Guo X Y, Ma L 2019 Acta Phys. Sin. 63 214303Google Scholar

    [5]

    Belcourt J, Holland C W, Dosso S E, et al. 2020 IEEE J. Oceanic Eng. 45 69Google Scholar

    [6]

    陈勃, 赵梅, 胡长青, Zygmunt Klusek 2018 声学学报 43 298Google Scholar

    Chen B, Zhao M, Hu C Q, Zygmunt K 2018 Acta Acoustica 43 298Google Scholar

    [7]

    Chiu L, Chang A, Chen H H, et al. 2020 Cont. Shelf Res. 201 104Google Scholar

    [8]

    徐丽亚, 杨坤德 2020 声学技术 39 1Google Scholar

    Xu L Y, Yang K D 2020 Technical Acoustics 39 1Google Scholar

    [9]

    Quijano J E, Dosso S E, Dettmer J, et al. 2013 J. Acoust. Soc. Am. 133 EL47Google Scholar

    [10]

    Qin J X, Katsnelson B, Godin O, Li Z L 2017 Chin. Phys. Lett. 34 094301Google Scholar

    [11]

    江鹏飞, 林建恒, 孙军平, 等 2019 物理学报 66 014306Google Scholar

    Jiang P G, Lin J H, Sun J P, et al. 2019 Acta Phys. Sin. 66 014306Google Scholar

    [12]

    薄连坤, 罗来源, 熊瑾煜 2018 声学学报 43 6Google Scholar

    Bao L K, Luo L Y, Xiong J Y 2018 Acta Acoustica 43 6Google Scholar

    [13]

    Barclay D R, Bevans D A, Buckingham M J 2019 IEEE J. Oceanic Eng. 99 1Google Scholar

    [14]

    李风华, 张仁和 2000 声学学报 4 297Google Scholar

    Li F H, Zhang R H 2000 Acta Acoustica 4 297Google Scholar

    [15]

    张学磊, 李整林, 黄晓砥 2009 声学学报 1 54Google Scholar

    Zhang X L, Li Z L, Huang X D 2009 Acta Acoustica 1 54Google Scholar

    [16]

    Wu S L, Li Z L, Qin J X 2015 Chin. Phys. Lett. 32 70Google Scholar

    [17]

    李梦竹, 李整林, 周纪浔 2019 物理学报 68 094301Google Scholar

    Li M Z, Li Z L, Zhou J X 2019 Acta Phys. Sin. 68 094301Google Scholar

    [18]

    李梦竹, 李整林, 李倩倩 2019 声学学报 44 321Google Scholar

    Li M Z, Li Z L, Li Q Q 2019 Acta Acoustica 44 321Google Scholar

    [19]

    Fialkowski L T, Lingevitch J F, Perkins J S, et al. 2003 IEEE J. Oceanic Eng. 28 370Google Scholar

    [20]

    Jiang Y M, Chapman N R, Badiey M 2007 J. Acoust. Soc. Am. 121 1879Google Scholar

    [21]

    布列霍夫斯基赫 L 著 (杨训仁 译) 1985 分层介质中的波 (北京: 科学出版社) 第10—16页

    Л. М. Бреховских L (translated by Yang X R) 1985 Waves In Layered Medium (Beijing: Science Press) pp10–16 (in Chinese)

    [22]

    Hamilton E L, Bachman R T 1982 J. Acoust. Soc. Am. 72 1891Google Scholar

    [23]

    布列霍夫斯基赫 L著 (中国海洋大学, 中国科学院声学研究所 译) 1983 海洋声学 (北京: 科学出版社) 第309—314页

    Л. М. Бреховских L (translated by OUC & IACAS) 1983 Ocean Acoustic (Beijing: Science Press) pp309–314 (in Chinese)

  • 图 1  两层海底模型的反射

    Figure 1.  Reflection of the two-layer seabed model.

    图 2  各项参数随频率和沉积层吸收系数的变化 (a) 海水-沉积层界面反射系数相位; (b) 沉积层-基底界面反射系数相位; (c) 垂直相移实部

    Figure 2.  Various parameters vary with frequency and the absorption coefficient of the sedimentary layer: (a) Phase of the reflection coefficient of the seawater-sedimentary layer interface; (b) phase of the reflection coefficient of the sedimentary layer-substrate interface; (c) real part of the vertical phase shift.

    图 3  各项参数随频率和沉积层吸收系数的变化 (a) 海水-沉积层界面反射系数模; (b)沉积层-基底界面反射系数模; (c) 衰减项

    Figure 3.  Various parameters vary with frequency and the absorption coefficient of the sediment layer: (a) Reflection coefficient of the seawater-sedimentary layer interface; (b) reflection coefficient of the sedimentary layer- substrate interface; (c) attenuation term.

    图 4  海底反射系数模随频率和沉积层吸收系数的变化

    Figure 4.  Seabed reflectance varies with frequency and absorption coefficient of sedimentary layer.

    图 5  不同频点下海底反射系数随各地声参数的变化 (a) 沉积层吸收系数; (b) 基底声速; (c) 基底密度; (d) 基底吸收系数

    Figure 5.  Seabed reflectance coefficient varies with the various GA parameters at different frequency points: (a) Absorption coefficient of sedimentary layer; (b) sound speed of substrate; (c) density of substrate; (d) absorption coefficient of substrate.

    图 6  反演流程图

    Figure 6.  Flow chart of inversion.

    图 7  实验作业方式示意图

    Figure 7.  Schematic diagram of experimental work.

    图 8  实验海区声速剖面

    Figure 8.  Sound speed profile of the experimental sea area.

    图 9  声源深度200 m, 接收距离1.7 km的多途到达时延

    Figure 9.  Multi-path arrival delay at source depth of 200 m and receiving distance of 1.7 km.

    图 10  声源深度200 m, 接收距离1.7 km, 接收深度800 m的多途信号

    Figure 10.  Multi-path signal under sound source depth of 200 m, receiving distance of 1.7 km and receiving depth of 800 m.

    图 11  (22)式提取的海底反射系数干涉周期

    Figure 11.  Interference period of seabed reflection coefficient extracted by Eq. (22).

    图 12  沉积层声速和厚度反演结果

    Figure 12.  Inversion results of sound speed and thickness of sedimentary layer.

    图 13  提取海底反射系数的1/4振荡周期频率和半波层频率

    Figure 13.  1/4 oscillation period frequency and the half-wave layer frequency of seabed reflection coefficient.

    图 14  不同接收掠射角下对应的沉积层吸收系数平均值

    Figure 14.  Average value of the absorption coefficient of the sedimentary layer under different receiving grazing angle.

    图 15  基底声速反演结果

    Figure 15.  Inversion result of the substrate sound speed.

    图 16  沉积层吸收系数反演结果

    Figure 16.  Inversion result of the sedimentary layer absorption coefficient.

    图 17  单频沉积层吸收系数反演结果

    Figure 17.  Inversion results of sedimentary layer absorption coefficient under single frequency.

    图 18  1/4振荡周期频率下沉积层吸收系数和基底声速的二维反演结果

    Figure 18.  Two-dimensional inversion results of absorption coefficient of sedimentary layer and sound speed of substrate at 1/4 oscillation period frequency.

    图 19  半波层频率下沉积层吸收系数和基底声速的二维反演结果

    Figure 19.  Two-dimensional inversion results of absorption coefficient of sedimentary layer and sound speed of substrate at half-wave layer frequency.

    图 20  声源深度200 m, 接收深度97 m, 中心频率1 kHz时的传播损失

    Figure 20.  Transmission loss at source depth of 200 m, receiving depth of 97 m and center frequency of 1 kHz.

    图 21  声源深度200 m, 接收深度97 m, 中心频率800 Hz时的传播损失

    Figure 21.  Transmission loss at source depth of 200 m, receiving depth of 97 m and center frequency of 800 Hz.

    图 22  声源深度200 m, 接收深度598 m, 中心频率1.2 kHz时的传播损失

    Figure 22.  Transmission loss at source depth of 200 m, receiving depth of 598 m and center frequency of 1.2 kHz.

    图 23  不同接收深度下前180 km传播损失均方根误差

    Figure 23.  RMSE of transmission loss of 180 km at different reception depths.

    图 24  不同接收深度下前100 km传播损失均方根误差

    Figure 24.  RMSE of transmission loss of 100 km at different reception depths.

    表 1  海底反射系数仿真参数

    Table 1.  Simulation parameters of seabed reflection coefficient.

    参数$ {c_{\text{s}}} $/(m·s–1)$ {\rho _{\text{s}}} $/(g·cm–3)$ {d_{}} $/m$ {\alpha _{\text{s}}} $/(dB·λ–1)$ {c_{\text{b}}} $/(m·s–1)$ {\rho _{\text{b}}} $/(g·cm–3)$ {\alpha _{\text{b}}} $/(dB·λ–1)
    数值16001.5200—1.018002.01.0
    DownLoad: CSV

    表 2  本文方法反演结果

    Table 2.  Inversion results obtained by using the method in this paper.

    反演参数参数穷举空间反演结果
    沉积层声速/(m·s–1)1450 —18001570.6
    沉积层密度/(g·cm–3)1.61
    沉积层厚度/m0—502.40
    沉积层吸收系数/(dB·λ–1)0—1.00.18
    基底声速/(m·s–1)1700 —22001809.5
    基底密度/(g·cm–3)2.06
    基底吸收系数/(dB·λ–1)1.0
    DownLoad: CSV

    表 3  Hamilton沉积分类参数

    Table 3.  Hamilton sedimentary classification parameters.

    沉积物类型声速
    /(m·s–1)
    密度
    /(g·cm–3)
    衰减系数
    /(dB·m–1·kHz–1)
    粗砂18362.0340.479
    细砂17531.9570.510
    极细砂16971.8660.673
    粉砂质砂16681.8060.692
    砂质粉砂16641.7870.756
    粉砂16231.7670.673
    砂-粉砂-粘土15791.5900.113
    粘土质粉砂15491.4880.095
    粉砂质粘土15201.4210.078
    DownLoad: CSV
  • [1]

    杨坤德, 马远良 2009 物理学报 58 1798Google Scholar

    Yang K, Ma Y L 2009 Acta Phys. Sin. 58 1798Google Scholar

    [2]

    黎雪刚, 杨坤德, 张同伟, 等 2009 物理学报 58 7741Google Scholar

    Li X G, Yang K D, Zhang T W, et al. 2009 Acta Phys. Sin. 58 7741Google Scholar

    [3]

    周天, 李海森, 朱建军, 等 2014 物理学报 63 084302Google Scholar

    Zhou T, Li H S, Zhu J J, et al. 2014 Acta Phys. Sin. 63 084302Google Scholar

    [4]

    李赫, 郭新毅, 马力 2019 物理学报 63 214303Google Scholar

    Li H, Guo X Y, Ma L 2019 Acta Phys. Sin. 63 214303Google Scholar

    [5]

    Belcourt J, Holland C W, Dosso S E, et al. 2020 IEEE J. Oceanic Eng. 45 69Google Scholar

    [6]

    陈勃, 赵梅, 胡长青, Zygmunt Klusek 2018 声学学报 43 298Google Scholar

    Chen B, Zhao M, Hu C Q, Zygmunt K 2018 Acta Acoustica 43 298Google Scholar

    [7]

    Chiu L, Chang A, Chen H H, et al. 2020 Cont. Shelf Res. 201 104Google Scholar

    [8]

    徐丽亚, 杨坤德 2020 声学技术 39 1Google Scholar

    Xu L Y, Yang K D 2020 Technical Acoustics 39 1Google Scholar

    [9]

    Quijano J E, Dosso S E, Dettmer J, et al. 2013 J. Acoust. Soc. Am. 133 EL47Google Scholar

    [10]

    Qin J X, Katsnelson B, Godin O, Li Z L 2017 Chin. Phys. Lett. 34 094301Google Scholar

    [11]

    江鹏飞, 林建恒, 孙军平, 等 2019 物理学报 66 014306Google Scholar

    Jiang P G, Lin J H, Sun J P, et al. 2019 Acta Phys. Sin. 66 014306Google Scholar

    [12]

    薄连坤, 罗来源, 熊瑾煜 2018 声学学报 43 6Google Scholar

    Bao L K, Luo L Y, Xiong J Y 2018 Acta Acoustica 43 6Google Scholar

    [13]

    Barclay D R, Bevans D A, Buckingham M J 2019 IEEE J. Oceanic Eng. 99 1Google Scholar

    [14]

    李风华, 张仁和 2000 声学学报 4 297Google Scholar

    Li F H, Zhang R H 2000 Acta Acoustica 4 297Google Scholar

    [15]

    张学磊, 李整林, 黄晓砥 2009 声学学报 1 54Google Scholar

    Zhang X L, Li Z L, Huang X D 2009 Acta Acoustica 1 54Google Scholar

    [16]

    Wu S L, Li Z L, Qin J X 2015 Chin. Phys. Lett. 32 70Google Scholar

    [17]

    李梦竹, 李整林, 周纪浔 2019 物理学报 68 094301Google Scholar

    Li M Z, Li Z L, Zhou J X 2019 Acta Phys. Sin. 68 094301Google Scholar

    [18]

    李梦竹, 李整林, 李倩倩 2019 声学学报 44 321Google Scholar

    Li M Z, Li Z L, Li Q Q 2019 Acta Acoustica 44 321Google Scholar

    [19]

    Fialkowski L T, Lingevitch J F, Perkins J S, et al. 2003 IEEE J. Oceanic Eng. 28 370Google Scholar

    [20]

    Jiang Y M, Chapman N R, Badiey M 2007 J. Acoust. Soc. Am. 121 1879Google Scholar

    [21]

    布列霍夫斯基赫 L 著 (杨训仁 译) 1985 分层介质中的波 (北京: 科学出版社) 第10—16页

    Л. М. Бреховских L (translated by Yang X R) 1985 Waves In Layered Medium (Beijing: Science Press) pp10–16 (in Chinese)

    [22]

    Hamilton E L, Bachman R T 1982 J. Acoust. Soc. Am. 72 1891Google Scholar

    [23]

    布列霍夫斯基赫 L著 (中国海洋大学, 中国科学院声学研究所 译) 1983 海洋声学 (北京: 科学出版社) 第309—314页

    Л. М. Бреховских L (translated by OUC & IACAS) 1983 Ocean Acoustic (Beijing: Science Press) pp309–314 (in Chinese)

  • [1] Kang Juan, Peng Zhao-Hui, He Li, Li Sheng-Hao, Yu Xiao-Tao. Low frequency inversion method based on multi-layer holizontal variation shallow seafloor model. Acta Physica Sinica, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] Zhou Da-Ren, Lu Huan-Cai, Cheng Xiang-Le, McFarland D. Michael. Reconstruction of half-space boundary impedance and sound source direct radiation based on reflection coefficient estimation. Acta Physica Sinica, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [3] Hou Sen, Hu Chang-Qing, Zhao Mei. Inversion method for bubble size distribution with sound attenuation. Acta Physica Sinica, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [4] Li Feng-Hua, Wang Han-Zhuo. Geo-acoustic inversion using polynomial chaos expansion. Acta Physica Sinica, 2021, 70(17): 174305. doi: 10.7498/aps.70.20210119
    [5] Li Meng-Zhu, Li Zheng-Lin, Zhou Ji-Xun, Zhang Ren-He. Geoacoustic inversion for acoustic parameters of sediment layer with low sound speed. Acta Physica Sinica, 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [6] Zhang Peng,  Li Zheng-Lin,  Wu Li-Xin,  Zhang Ren-He,  Qin Ji-Xing. Characteristics of convergence zone formed by bottom reflection in deep water. Acta Physica Sinica, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [7] Liu Hang, Yu Yong-Ji, Wang Yu-Heng, Liu He-Yan, Li Lu-Jie, Jin Guang-Yong. Energy conversion of multi-optical parametric oscillation based on time-dependent split-step integration methods in MgO:APLN. Acta Physica Sinica, 2019, 68(24): 244202. doi: 10.7498/aps.68.20190843
    [8] Li Sheng-Hao, Li Zheng-Lin, Li Wen, Qin Ji-Xing. Horizontal refraction effects of seamounts on sound propagation in deep water. Acta Physica Sinica, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [9] Li Jia-Wei, Lu Li-Cheng, Guo Sheng-Ming, Ma Li. Inversion of seabed attenuation by using single mode extracted by warping transform. Acta Physica Sinica, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [10] Hu Zhi-Guo, Li Zheng-Lin, Zhang Ren-He, Ren Yun, Qin Ji-Xing, He Li. Sound propagation in deep water with a sloping bottom. Acta Physica Sinica, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [11] Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang. A far distance wideband geoacoustic parameter inversion method based on a modal dispersion curve. Acta Physica Sinica, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [12] Wang Yang, Li Ang, Xie Pin-Hua, Chen Hao, Xu Jin, Wu Feng-Cheng, Liu Jian-Guo, Liu Wen-Qing. Retrieving vertical profile of aerosol extinction by multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
    [13] Han Yue-Qi, Zhong Zhong, Wang Yun-Feng, Du Hua-Dong. Gradient calculation based ensemble variational method and its application to the inversion of the turbulent coefficient in atmospheric Ekman layer. Acta Physica Sinica, 2013, 62(4): 049201. doi: 10.7498/aps.62.049201
    [14] Qu Ke, Hu Chang-Qing, Zhao Mei. A rapid inversion scheme for seabed single parameter using time-domain impulse response. Acta Physica Sinica, 2013, 62(22): 224303. doi: 10.7498/aps.62.224303
    [15] Yang Kun-De, Ma Yuan-Liang. A geoacoustic inversion method based on bottom reflection signals. Acta Physica Sinica, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [16] Wei Bing, Ge De-Biao. Reconstruction of transverse permittivity and conductivity for a lossy anisotropic plate. Acta Physica Sinica, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [17] Gu Pei-Fu, Chen Hai-Xing, Zheng Zhen-Rong, Liu Xu. Determination of the extinction coefficient of a weakly absorbing multilayer system. Acta Physica Sinica, 2005, 54(8): 3722-3725. doi: 10.7498/aps.54.3722
    [18] Su Wei-Yi, Yang Juan, Wei Kun, Mao Gen-Wang, He Hong-Qing. Calculation and analysis on the wave reflected characteristics of plasma before the conductor plate. Acta Physica Sinica, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [19] LUO ZHENG-MING, LI TAI-HUA. SCALING FORMULAE OF REFLECTION COEFFICIENT FOR LIGHT IONS. Acta Physica Sinica, 1994, 43(1): 118-123. doi: 10.7498/aps.43.118
    [20] PAN WEI-YAN. INFLUENCE OF EARTH'S CURVATURE ON CALCULATION OF IONOSPHERE REFLECTION AT LF AND VLF BANDS. Acta Physica Sinica, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
Metrics
  • Abstract views:  5365
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2021
  • Accepted Date:  23 February 2022
  • Available Online:  01 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回