Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reconstruction of half-space boundary impedance and sound source direct radiation based on reflection coefficient estimation

Zhou Da-Ren Lu Huan-Cai Cheng Xiang-Le McFarland D. Michael

Citation:

Reconstruction of half-space boundary impedance and sound source direct radiation based on reflection coefficient estimation

Zhou Da-Ren, Lu Huan-Cai, Cheng Xiang-Le, McFarland D. Michael
PDF
HTML
Get Citation
  • When implementing the reconstruction of the sound field radiated directly from a source located in a half-space, the half-space basis functions need to be formulated with boundary impedance as a parameter. The boundary impedance is usually obtained via in situ acoustic impedance measurement techniques. In a reconstruction method based on expansion in half-space spherical wave basis functions, a hologram surface and a single reference microphone placed in the near-field are used to collect sound pressures. The sound pressure at the reference microphone is first reconstructed and the error of the reconstructed pressure relative to the measured pressure is then calculated. The sound pressure reflection coefficient corresponding to the minimum error is chosen as the estimated value of the reflection coefficient at each of the measurement points. Thus, this method is applicable to reconstructing the directly radiated sound pressures without knowledge of the boundary impedance, without the in situ acoustic impedance measurements necessary for conventional methods. The purpose of this work is to discuss the various parameters affecting the accuracy of reconstruction. Moreover, the boundary impedance is reconstructed based on the estimation of the reflection coefficient. In this way, an acoustic impedance measurement technique implemented via the near-field acoustical holography is proposed. Taking the source to be spherical, numerical simulations are conducted to verify the proposed method of reconstructing the boundary impedance and the directly radiated sound pressures. The influences of reference microphone coordinates, the effective flow resistivity of the boundary, and the rate of decrease of porosity with depth of the boundary on the accuracy of reconstruction are quantitatively analyzed.
      Corresponding author: Lu Huan-Cai, huancailu@zjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51975525, 52005443) and the Zhejiang Provincial Research Foundation for Basic Public Welfare Research, China (Grant No. LQ21E050016).
    [1]

    Wu S F 2008 J. Acoust. Soc. Am. 124 2680Google Scholar

    [2]

    威廉姆斯 E G 著 (卢奂采 译) 2016 傅里叶声学: 声辐射与近场声全息 (北京: 清华大学出版社) 第152—170页

    Williams E G (translated by Lu H C) 2016 Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (Beijing: Tsinghua University Press) pp152–170 (in Chinese)

    [3]

    Luo Z W, Comesana D F, Zheng C J, Bi C X 2019 J. Sound Vib. 439 43Google Scholar

    [4]

    Lu H, Wu S F 2009 J. Acoust. Soc. Am. 125 1538Google Scholar

    [5]

    Shi Z, Xiang Y, Lu J, Wang Y, Zhang Y 2021 AIP Adv. 11 075220Google Scholar

    [6]

    Zea E, Arteaga I L 2016 J. Sound Vib. 380 129Google Scholar

    [7]

    Zea E, Arteaga I L 2019 Appl. Acoust. 149 181Google Scholar

    [8]

    Zhao X, Wu S F 2005 J. Acoust. Soc. Am. 117 555Google Scholar

    [9]

    Bi C X, Jing W Q, Zhang Y B, Lin W L 2017 J. Sound Vib. 386 149Google Scholar

    [10]

    Bi C X, Chen X Z, Zhou R, Chen J 2007 ASME J. Vib. Acoust. 129 323Google Scholar

    [11]

    毕传兴, 陈心昭, 陈剑 2004 物理学报 53 4268Google Scholar

    Bi C X, Chen X Z, Chen J 2004 Acta Phys. Sin. 53 4268Google Scholar

    [12]

    Pan S W, Jiang W K, Zhang H B, Xiang S 2014 J. Acoust. Soc. Am. 136 1744Google Scholar

    [13]

    Pan S W, Jiang W K, Xiang S, Liu X J 2014 Wave Motion 51 1273Google Scholar

    [14]

    Brandão E, Lenzi A, Paul S 2015 Acta Acust. United Ac. 101 443Google Scholar

    [15]

    Tamura M 1990 J. Acoust. Soc. Am. 88 2259Google Scholar

    [16]

    Hald J, Song W, Haddad K, Jeong C, Richard A 2019 Appl. Acoust. 143 74Google Scholar

    [17]

    Richard A, Fernandez-Grande E 2019 J. Acoust. Soc. Am. 146 501Google Scholar

    [18]

    Dupont S, Melon M, Berry A 2020 J. Acoust. Soc. Am. 147 3613Google Scholar

    [19]

    Zhou D, Lu H, McFarland D M, Xiao Y 2020 J. Theor. Comput. Acous. 28 2050019Google Scholar

    [20]

    周达仁, 肖永雄, 卢奂采 2021 声学学报 46 321Google Scholar

    Zhou D R, Xiao Y X, Lu H C 2021 Acta Acust. 46 321Google Scholar

    [21]

    Morse P M, Ingard K U 1968 Theoretical Acoustics (New York: McGraw-Hill) pp370–371

    [22]

    Attenborough K 1992 J. Acoust. Soc. Am. 92 418Google Scholar

  • 图 1  半空间声场示意图 (a)声源、传声器阵列和阻抗边界的布置; (b)声源几何中心及其关于边界的镜像点与场点、阻抗边界之间的几何关系

    Figure 1.  Schematic of the half-space sound field: (a) Setup of the source, the microphone array and the impedance boundary; (b) geometric relationship between the geometric center of the source, the mirror point, the field point and the impedance boundary.

    图 2  单位圆内部区域的网格划分

    Figure 2.  Mesh of the region inside the unit circle.

    图 3  仿真声场示意图 (a)脉动球声源、传声器阵列、参考传声器和阻抗边界的布置; (b)阵列上传声器的编号

    Figure 3.  Schematic of the simulated sound field: (a) Setup of the dilating sphere source, the microphone array, the reference microphone and the impedance boundary; (b) the indices of the microphones mounted on the array.

    图 4  相对误差的曲面图 (a)误差E随反射系数${R_{\rm p}}$变化的分布; (b)误差${\varepsilon ^{{\text{pres}}}}$随反射系数均值${\bar R_{\rm p}}$变化的分布

    Figure 4.  Surface plot of the relative error: (a) The error E versus reflection coefficient ${R_{\rm p}}$; (b) the error ${\varepsilon ^{{\text{pres}}}}$ versus mean value of the reflection coefficient ${\bar R_{\rm p}}$.

    图 5  半空间总声压、声源直接辐射声压的重构值和声源直接辐射声压的理论值在阵列测点的分布

    Figure 5.  Sound pressure distributions at the measurement points on the array, including the total values in the half-space, the reconstructed values and the benchmark values radiated directly from the source.

    图 6  声阻抗率重构的相对误差${\varepsilon ^{{\text{imp}}}}$和声源直接辐射声压重构的相对误差${\varepsilon ^{{\text{pres}}}}$随频率f的变化曲线

    Figure 6.  Relative error of the reconstructed specific acoustic impedance ${\varepsilon ^{{\text{imp}}}}$ and the relative error of the reconstructed sound pressure ${\varepsilon ^{{\text{pres}}}}$ radiated directly from the source versus frequency f.

    图 7  声阻抗率重构的相对误差${\varepsilon ^{{\text{imp}}}}$和声源直接辐射声压重构的相对误差${\varepsilon ^{{\text{pres}}}}$随参考传声器坐标${z_{{\text{ref}}}}$的变化曲线 (a)$f = $$ 100{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (b)$f = 900{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (c)$f = 1700{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (d)$f = 2500{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (e)$f = 3300{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$

    Figure 7.  Relative error of the reconstructed specific acoustic impedance ${\varepsilon ^{{\text{imp}}}}$ and the relative error of the reconstructed sound pressure ${\varepsilon ^{{\text{pres}}}}$ radiated directly from the source versus coordinate of the reference microphone ${z_{{\text{ref}}}}$: (a)$f = 100{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (b)$f = 900{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (c)$f = 1700{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (d)$f = 2500{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (e) $f = 3300{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$.

    图 8  声阻抗率重构的相对误差${\varepsilon ^{{\text{imp}}}}$和声源直接辐射声压重构的相对误差${\varepsilon ^{{\text{pres}}}}$随边界参数${\sigma _{\text{e}}}$的变化曲线 (a) ${z_{{\text{ref}}}} = 0{\kern 1 pt} $; (b) ${z_{{\text{ref}}}} = $$ 0.05{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (c) ${z_{{\text{ref}}}} = 0.10{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (d) ${z_{{\text{ref}}}} = 0.15{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$

    Figure 8.  Relative error of the reconstructed specific acoustic impedance ${\varepsilon ^{{\text{imp}}}}$ and the relative error of the reconstructed sound pressure ${\varepsilon ^{{\text{pres}}}}$ radiated directly from the source versus boundary parameter ${\sigma _{\text{e}}}$: (a) ${z_{{\text{ref}}}} = 0{\kern 1 pt} $; (b) ${z_{{\text{ref}}}} = 0.05{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (c) ${z_{{\text{ref}}}} = 0.10{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (d) ${z_{{\text{ref}}}} = 0.15{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$.

    图 9  声阻抗率重构的相对误差${\varepsilon ^{{\text{imp}}}}$和声源直接辐射声压重构的相对误差${\varepsilon ^{{\text{pres}}}}$随边界参数${\alpha _{\text{e}}}$的变化曲线 (a) ${z_{{\text{ref}}}} = 0{\kern 1 pt} $; (b) ${z_{{\text{ref}}}} = 0.05{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (c) ${z_{{\text{ref}}}} = 0.10{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (d) ${z_{{\text{ref}}}} = 0.15{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$

    Figure 9.  Relative error of the reconstructed specific acoustic impedance ${\varepsilon ^{{\text{imp}}}}$ and the relative error of the reconstructed sound pressure ${\varepsilon ^{{\text{pres}}}}$ radiated directly from the source versus boundary parameter ${\alpha _{\text{e}}}$: (a) ${z_{{\text{ref}}}} = 0{\kern 1 pt} $; (b) ${z_{{\text{ref}}}} = 0.05{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (c) ${z_{{\text{ref}}}} = 0.10{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (d) ${z_{{\text{ref}}}} = 0.15{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$.

  • [1]

    Wu S F 2008 J. Acoust. Soc. Am. 124 2680Google Scholar

    [2]

    威廉姆斯 E G 著 (卢奂采 译) 2016 傅里叶声学: 声辐射与近场声全息 (北京: 清华大学出版社) 第152—170页

    Williams E G (translated by Lu H C) 2016 Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (Beijing: Tsinghua University Press) pp152–170 (in Chinese)

    [3]

    Luo Z W, Comesana D F, Zheng C J, Bi C X 2019 J. Sound Vib. 439 43Google Scholar

    [4]

    Lu H, Wu S F 2009 J. Acoust. Soc. Am. 125 1538Google Scholar

    [5]

    Shi Z, Xiang Y, Lu J, Wang Y, Zhang Y 2021 AIP Adv. 11 075220Google Scholar

    [6]

    Zea E, Arteaga I L 2016 J. Sound Vib. 380 129Google Scholar

    [7]

    Zea E, Arteaga I L 2019 Appl. Acoust. 149 181Google Scholar

    [8]

    Zhao X, Wu S F 2005 J. Acoust. Soc. Am. 117 555Google Scholar

    [9]

    Bi C X, Jing W Q, Zhang Y B, Lin W L 2017 J. Sound Vib. 386 149Google Scholar

    [10]

    Bi C X, Chen X Z, Zhou R, Chen J 2007 ASME J. Vib. Acoust. 129 323Google Scholar

    [11]

    毕传兴, 陈心昭, 陈剑 2004 物理学报 53 4268Google Scholar

    Bi C X, Chen X Z, Chen J 2004 Acta Phys. Sin. 53 4268Google Scholar

    [12]

    Pan S W, Jiang W K, Zhang H B, Xiang S 2014 J. Acoust. Soc. Am. 136 1744Google Scholar

    [13]

    Pan S W, Jiang W K, Xiang S, Liu X J 2014 Wave Motion 51 1273Google Scholar

    [14]

    Brandão E, Lenzi A, Paul S 2015 Acta Acust. United Ac. 101 443Google Scholar

    [15]

    Tamura M 1990 J. Acoust. Soc. Am. 88 2259Google Scholar

    [16]

    Hald J, Song W, Haddad K, Jeong C, Richard A 2019 Appl. Acoust. 143 74Google Scholar

    [17]

    Richard A, Fernandez-Grande E 2019 J. Acoust. Soc. Am. 146 501Google Scholar

    [18]

    Dupont S, Melon M, Berry A 2020 J. Acoust. Soc. Am. 147 3613Google Scholar

    [19]

    Zhou D, Lu H, McFarland D M, Xiao Y 2020 J. Theor. Comput. Acous. 28 2050019Google Scholar

    [20]

    周达仁, 肖永雄, 卢奂采 2021 声学学报 46 321Google Scholar

    Zhou D R, Xiao Y X, Lu H C 2021 Acta Acust. 46 321Google Scholar

    [21]

    Morse P M, Ingard K U 1968 Theoretical Acoustics (New York: McGraw-Hill) pp370–371

    [22]

    Attenborough K 1992 J. Acoust. Soc. Am. 92 418Google Scholar

  • [1] Wu Man-Jin, Yao Bo-Zhi, Shi Li-Li, Chen Ben-Wen, Wu Jing-Bo, Zhang Cai-Hong, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Cryogenic blackbody calibration source for superconducting terahertz detectors. Acta Physica Sinica, 2022, 71(16): 168702. doi: 10.7498/aps.71.20220103
    [2] Shi Sheng-Guo, Gao Yuan, Zhang Hao-Yang, Yang Bo-Quan. Sound field reconstruction of structural source based on element radiation superposition method. Acta Physica Sinica, 2021, 70(13): 134301. doi: 10.7498/aps.70.20201971
    [3] Zhang Lan-Yue, Ding Dan-Dan, Yang De-Sen, Shi Sheng-Guo, Zhu Zhong-Rui. Noise source identification by using near field acoustic holograpy and focused beamforming based on spherical microphone array with random unifrom distribution of elements. Acta Physica Sinica, 2017, 66(1): 014303. doi: 10.7498/aps.66.014303
    [4] Song Yu-Lai, Lu Huan-Cai, Jin Jiang-Ming. Sound wave separation method based on spatial signals resampling with single layer microphone array. Acta Physica Sinica, 2014, 63(19): 194305. doi: 10.7498/aps.63.194305
    [5] Bi Chuan-Xing, Hu Ding-Yu, Zhang Yong-Bin, Xu Liang. Sound field separation technique based on equivalent source method and double-layer particle velocity measurements. Acta Physica Sinica, 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [6] Lu Ai-Jiang. SiBN ceramics, a stealth material at high temperature. Acta Physica Sinica, 2013, 62(21): 217101. doi: 10.7498/aps.62.217101
    [7] Bi Chuan-Xing, Guo Ming-Jian, Zhang Yong-Bin, Xu Liang. An investigation of partial field decomposition using pressure gradient reference. Acta Physica Sinica, 2012, 61(15): 154301. doi: 10.7498/aps.61.154301
    [8] Li Lin-Qian, Shi Yan-Xiang, Wang Fei, Wei Bing. SO-FDTD method of analyzing the reflection and transmission coefficient of weakly ionized dusty plasma layer. Acta Physica Sinica, 2012, 61(12): 125201. doi: 10.7498/aps.61.125201
    [9] Chen Zhi-Min, Zhu Hai-Chao, Mao Rong-Fu. Research on localization of the source of cyclostationary sound field. Acta Physica Sinica, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304
    [10] Xu Liang, Bi Chuan-Xing, Wang Hui, Xu Bin, Chen Xin-Zhao. Hologram pressure field weighted norm extrapolation method. Acta Physica Sinica, 2011, 60(11): 114304. doi: 10.7498/aps.60.114304
    [11] Bi Chuan-Xing, Zhang Yong-Bin, Xu Liang, Chen Xin-Zhao. An experimental investigation of planar nearfield acoustic holography using pressure and particle velocity measurements. Acta Physica Sinica, 2010, 59(2): 1108-1115. doi: 10.7498/aps.59.1108
    [12] Zhang Xiao-Zheng, Bi Chuan-Xing, Xu Liang, Chen Xin-Zhao. Resolution enhancement of nearfield acoustic holography by the wave superposition approach. Acta Physica Sinica, 2010, 59(8): 5564-5571. doi: 10.7498/aps.59.5564
    [13] Bi Chuan-Xing, Yuan Yan, He Chun-Dong, Xu Liang. Patch nearfield acoustic holography based on the distributed source boundary point method. Acta Physica Sinica, 2010, 59(12): 8646-8654. doi: 10.7498/aps.59.8646
    [14] Zhang Yong-Bin, Xu Liang, Bi Chuan-Xing, Chen Xin-Zhao. Sound field separation technique based on single surface measurement using pressure-velocity transducers. Acta Physica Sinica, 2009, 58(12): 8364-8371. doi: 10.7498/aps.58.8364
    [15] Sun Hai-Yan, Jiao Chong-Qing, Luo Ji-Run. Influence of reflection of the output port on beam-wave interaction in gyrotron traveling wave amplifier. Acta Physica Sinica, 2009, 58(2): 925-929. doi: 10.7498/aps.58.925
    [16] Zhang Hai-Bin, Jiang Wei-Kang, Wan Quan. Nearfield acoustic holography based on wave superposition algorithm for cyclostationary sound filed. Acta Physica Sinica, 2008, 57(1): 313-321. doi: 10.7498/aps.57.313
    [17] Xu Liang, Bi Chuan-Xing, Chen Jian, Chen Xin-Zhao. Algorithm and experimental investigation of patch nearfield acoustic holography based on wave superposition approach. Acta Physica Sinica, 2007, 56(5): 2776-2783. doi: 10.7498/aps.56.2776
    [18] Li Wei-Bing, Chen Jian, Bi Chuan-Xing, Chen Xin-Zhao. Investigation on holographic algorithm and experiment of combined wave superposition approach. Acta Physica Sinica, 2006, 55(3): 1264-1270. doi: 10.7498/aps.55.1264
    [19] LUO ZHENG-MING, LI TAI-HUA. SCALING FORMULAE OF REFLECTION COEFFICIENT FOR LIGHT IONS. Acta Physica Sinica, 1994, 43(1): 118-123. doi: 10.7498/aps.43.118
    [20] PAN WEI-YAN. INFLUENCE OF EARTH'S CURVATURE ON CALCULATION OF IONOSPHERE REFLECTION AT LF AND VLF BANDS. Acta Physica Sinica, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
Metrics
  • Abstract views:  3342
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2021
  • Accepted Date:  24 January 2022
  • Available Online:  11 June 2022
  • Published Online:  20 June 2022

/

返回文章
返回