Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cryogenic blackbody calibration source for superconducting terahertz detectors

Wu Man-Jin Yao Bo-Zhi Shi Li-Li Chen Ben-Wen Wu Jing-Bo Zhang Cai-Hong Jin Biao-Bing Chen Jian Wu Pei-Heng

Citation:

Cryogenic blackbody calibration source for superconducting terahertz detectors

Wu Man-Jin, Yao Bo-Zhi, Shi Li-Li, Chen Ben-Wen, Wu Jing-Bo, Zhang Cai-Hong, Jin Biao-Bing, Chen Jian, Wu Pei-Heng
PDF
HTML
Get Citation
  • Blackbody radiation source has been widely used as a calibration source for terahertz (THz) radiometers in recent decades with the applications of THz detection technology in the fields of aerospace, astronomy and remote sensing. We develop a THz blackbody calibration source capable of working in the cryogenic environment and having adjustable radiation power for the calibration of THz superconducting detectors. The ideal blackbody source has an emissivity and absorptivity of 1 and the reflectance coefficient is used to indirectly characterise the performance of the developed blackbody source. In this work, we use a mixture of epoxy, catalyst, carbon black and glass beads as blackbody absorbing material. The real part and imaginary part of the complex dielectric constant of Berkeley blackbody material are extracted from the THz time-domain spectra, and its reflection coefficient is measured. We use this material to design a conical blackbody radiation source , and simulate it as well. The simulation result show that it has low reflectivity below –35 dB in a frequency range of 0.2–0.5 THz. We fabricate a conical blackbody radiation source that is mounted in a dilution refrigerator, and use filters and light-guiding systems to make the detector for measuring the radiation by the THz light of a specific wavelength. The radiation power can be tuned by changing its temperature. The relationship between radiation power and temperature shows a power tuning range of 10–12–10–9 W in the frequency range of 0.2–0.5 THz with a minimum power value of 2.13 × 10–12 W. The designed blackbody radiation source can meet the calibration requirements of THz superconducting detectors, and will contribute to the development and application of highly sensitive THz radiometers.
      Corresponding author: Wu Jing-Bo, jbwu@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0700202, 2021YFB2800701) and the National Natural Science Foundation of China (Grant Nos. 62071217, 62027807, 6173110, 61871212).
    [1]

    Grasset O, Dougherty M K, Coustenis A, Bunce E J, Erd C, Titov D, Blanc M, Coates A, Drossart P, Fletcher L N, Hussmann H, Jaumann R, Krupp N, Lebreton J P, Prieto-Ballesteros O, Tortora P, Tosi F, Hoolst T V 2013 Planet. Space Sci. 78 1Google Scholar

    [2]

    Brown R L, Wild W, Cunningham C 2004 Adv. Space Res. 34 555Google Scholar

    [3]

    Schröder A, Murk A, Wylde R, Jacob K, Pike K, Winser M, Pujades M B, Kangas V 2017 IEEE Trans. Terahertz Sci. Technol. 7 677Google Scholar

    [4]

    Farrah D, Smith K E, Ardila D, Bradford C M, DiPirro M, Ferkinhoff C, Glenn J, Goldsmith P, Leisawitz D, Nikola T, Rangwala N, Rinehart S A, Staguhn J, Zemcov M, Zmuidzinas J, Bartlett J, Carey S, Fischer W J, Kamenetzky J, Kartaltepe J, Lacy M, Lis D C, Locke L, Lopez-Rodriguez E, MacGregor M, Mills E, Moseley S H, Murphy E J, Rhodes A, Richter M, Rigopoulou D, Sanders D, Sankrit R, Savini G, Smith J D, Stierwalt S 2019 J. Astron. Telesc. Inst. 5 020901

    [5]

    Beyer A D, Kenyon M E, Echternach P M, Day P K, Bock J J, Holmes W A, Bradford C M 2012 J. Low Temp. Phys. 167 182Google Scholar

    [6]

    Sizov F, Rogalski A 2010 Prog. Quantum Electron. 34 278Google Scholar

    [7]

    Sizov F 2010 Opto-Electron. Rev. 18 10

    [8]

    Baselmans J J A, Bueno J, Yates S J C, Yurduseven O, Llombart N, Karatsu K, Baryshev A M, Ferrari L, Endo A, Thoen D J, de Visser P J, Janssen R M J, Murugesan V, Driessen E F C, Coiffard G, Martin-Pintado J, Hargrave P, Griffin M 2017 Astron. Astrophys. 601 A89Google Scholar

    [9]

    Shaw M D, Bueno J, Day P, Bradford C M, Echternach P M 2009 Phys. Rev. B 79 144511

    [10]

    Bueno J, Shaw M D, Day P K, Echternach P M 2010 Appl. Phys. Lett. 96 103503Google Scholar

    [11]

    Echternach P M, Pepper B J, Reck T, Bradford C M 2018 Nat. Astron. 2 90Google Scholar

    [12]

    Randa J, Walker D K, Cox A E, Billinger R L 2005 IEEE Trans. Geosci. Remote Sens. 43 50Google Scholar

    [13]

    Skou N, Le Vine D 2006 Microwave Radiometer Systems: Design and Analysis (Norwood : Artech House)

    [14]

    Schröder A, Murk A, Wylde R, Schobert D, Winser M 2017 IEEE Trans. Geosci. Remote Sens. 55 7104Google Scholar

    [15]

    Draper D W, Newell D A, Teusch D A, Yoho P K 2013 IEEE Trans. Geosci. Remote Sens. 51 4731Google Scholar

    [16]

    Yagoubov P, Murk A, Wylde R, Bell G, Tan G H 2011 International Conference on Infrared, Millimeter, and Terahertz waves Houston, Texas, USA, October 2–7, 2011 p1

    [17]

    Jacob K, Schroder A, Kotiranta M, Murk A 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves Copenhagen, Denmark, September 25–30, 2016 p1

    [18]

    Shi Q, Li J, Zhi Q, Wang Z, Miao W, Shi S C 2022 Sci. China-Phys. Mech. Astron. 65 239511Google Scholar

    [19]

    Houtz D A, Emery W, Gu D, Jacob K, Murk A, Walker D K, Wylde R J 2017 IEEE Trans. Geosci. Remote Sens. 55 4586Google Scholar

    [20]

    Persky M J 1999 Rev. Sci. Instrum. 70 2193Google Scholar

    [21]

    韩晓惠, 张瑾, 杨晔, 马宇婷, 常天英, 崔洪亮 2016 光谱学与光谱分析 36 3449

    Han X H, Zhang J, Yang Y, Ma Y T, Chang T Y, Cui H L 2016 Spectrosc. Spect. Anal. 36 3449

    [22]

    Schröder A, Murk A 2016 IEEE Trans. Antennas Propag. 64 1850Google Scholar

    [23]

    石粒力, 吴敬波, 涂学凑, 金飚兵, 陈健, 吴培亨 2021 中国科学: 物理学 力学 天文学 51 054203Google Scholar

    Shi L L, Wu J B, Tu X C, Jin B B, Chen J, Wu P H 2021 Sci. China-Phys. Mech. Astron. 51 054203Google Scholar

  • 图 1  (a) 黑体辐射源的结构示意图; (b) 包含黑体辐射源的太赫兹探测器低温测试系统示意图

    Figure 1.  (a) Schematic diagram of the structure of the blackbody radiation source; (b) schematic diagram of the cryogenic terahertz detector test system including the blackbody radiation source.

    图 2  黑体材料介电常数的表征  (a) THz-TDS系统示意图; (b) 黑体材料的复介电常数实部与频率的关系, 左下角插图为填充黑体材料的矩形孔铜片样品照片; (c) 黑体材料复介电常数虚部与频率的关系

    Figure 2.  Permittivity of blackbody materials: (a) Schematic diagram of the THz - TDS system; (b) real part of permittivity for blackbody material versus frequency, the inset in the lower left corner is a photo of the copper sheet with a rectangular hole filled with blackbody material; (c) imaginary part of permittivity for blackbody material versus frequency.

    图 3  黑体材料反射系数表征 (a) 反射型THz-TDS系统示意图; (b) 平面黑体涂层材料样品, 1, 2分别表示测试位置; (c) 样品表面粗糙度; (d) 不同位置的反射系数

    Figure 3.  Reflectance characterization of blackbody materials: (a) Schematic diagram of the reflective THz-TDS system; (b) flat blackbody sample, 1 and 2 indicate the two test positions; (c) surface roughness of the sample; (d) reflectance at different positions.

    图 4  (a) 圆锥形黑体源光学模型; (b) 圆锥形黑体源反射系数仿真结果

    Figure 4.  (a) Optical model of conical blackbody source; (b) simulated reflectance of conical blackbody source.

    图 5  (a) 制备的黑体辐射源照片; (b) 200—500 GHz黑体辐射功率随温度的变化关系

    Figure 5.  (a) Image of a prepared blackbody source; (b) variation of blackbody power with temperature in the 200–500 GHz range.

  • [1]

    Grasset O, Dougherty M K, Coustenis A, Bunce E J, Erd C, Titov D, Blanc M, Coates A, Drossart P, Fletcher L N, Hussmann H, Jaumann R, Krupp N, Lebreton J P, Prieto-Ballesteros O, Tortora P, Tosi F, Hoolst T V 2013 Planet. Space Sci. 78 1Google Scholar

    [2]

    Brown R L, Wild W, Cunningham C 2004 Adv. Space Res. 34 555Google Scholar

    [3]

    Schröder A, Murk A, Wylde R, Jacob K, Pike K, Winser M, Pujades M B, Kangas V 2017 IEEE Trans. Terahertz Sci. Technol. 7 677Google Scholar

    [4]

    Farrah D, Smith K E, Ardila D, Bradford C M, DiPirro M, Ferkinhoff C, Glenn J, Goldsmith P, Leisawitz D, Nikola T, Rangwala N, Rinehart S A, Staguhn J, Zemcov M, Zmuidzinas J, Bartlett J, Carey S, Fischer W J, Kamenetzky J, Kartaltepe J, Lacy M, Lis D C, Locke L, Lopez-Rodriguez E, MacGregor M, Mills E, Moseley S H, Murphy E J, Rhodes A, Richter M, Rigopoulou D, Sanders D, Sankrit R, Savini G, Smith J D, Stierwalt S 2019 J. Astron. Telesc. Inst. 5 020901

    [5]

    Beyer A D, Kenyon M E, Echternach P M, Day P K, Bock J J, Holmes W A, Bradford C M 2012 J. Low Temp. Phys. 167 182Google Scholar

    [6]

    Sizov F, Rogalski A 2010 Prog. Quantum Electron. 34 278Google Scholar

    [7]

    Sizov F 2010 Opto-Electron. Rev. 18 10

    [8]

    Baselmans J J A, Bueno J, Yates S J C, Yurduseven O, Llombart N, Karatsu K, Baryshev A M, Ferrari L, Endo A, Thoen D J, de Visser P J, Janssen R M J, Murugesan V, Driessen E F C, Coiffard G, Martin-Pintado J, Hargrave P, Griffin M 2017 Astron. Astrophys. 601 A89Google Scholar

    [9]

    Shaw M D, Bueno J, Day P, Bradford C M, Echternach P M 2009 Phys. Rev. B 79 144511

    [10]

    Bueno J, Shaw M D, Day P K, Echternach P M 2010 Appl. Phys. Lett. 96 103503Google Scholar

    [11]

    Echternach P M, Pepper B J, Reck T, Bradford C M 2018 Nat. Astron. 2 90Google Scholar

    [12]

    Randa J, Walker D K, Cox A E, Billinger R L 2005 IEEE Trans. Geosci. Remote Sens. 43 50Google Scholar

    [13]

    Skou N, Le Vine D 2006 Microwave Radiometer Systems: Design and Analysis (Norwood : Artech House)

    [14]

    Schröder A, Murk A, Wylde R, Schobert D, Winser M 2017 IEEE Trans. Geosci. Remote Sens. 55 7104Google Scholar

    [15]

    Draper D W, Newell D A, Teusch D A, Yoho P K 2013 IEEE Trans. Geosci. Remote Sens. 51 4731Google Scholar

    [16]

    Yagoubov P, Murk A, Wylde R, Bell G, Tan G H 2011 International Conference on Infrared, Millimeter, and Terahertz waves Houston, Texas, USA, October 2–7, 2011 p1

    [17]

    Jacob K, Schroder A, Kotiranta M, Murk A 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves Copenhagen, Denmark, September 25–30, 2016 p1

    [18]

    Shi Q, Li J, Zhi Q, Wang Z, Miao W, Shi S C 2022 Sci. China-Phys. Mech. Astron. 65 239511Google Scholar

    [19]

    Houtz D A, Emery W, Gu D, Jacob K, Murk A, Walker D K, Wylde R J 2017 IEEE Trans. Geosci. Remote Sens. 55 4586Google Scholar

    [20]

    Persky M J 1999 Rev. Sci. Instrum. 70 2193Google Scholar

    [21]

    韩晓惠, 张瑾, 杨晔, 马宇婷, 常天英, 崔洪亮 2016 光谱学与光谱分析 36 3449

    Han X H, Zhang J, Yang Y, Ma Y T, Chang T Y, Cui H L 2016 Spectrosc. Spect. Anal. 36 3449

    [22]

    Schröder A, Murk A 2016 IEEE Trans. Antennas Propag. 64 1850Google Scholar

    [23]

    石粒力, 吴敬波, 涂学凑, 金飚兵, 陈健, 吴培亨 2021 中国科学: 物理学 力学 天文学 51 054203Google Scholar

    Shi L L, Wu J B, Tu X C, Jin B B, Chen J, Wu P H 2021 Sci. China-Phys. Mech. Astron. 51 054203Google Scholar

  • [1] Cheng Hong-Yang, Ma Qian-Ru, Xu Hao-Ran, Zhang Hui-Ping, Jin Zuan-Ming, He Wei, Peng Yan. Terahertz emission characterization of silicon based ferromagnetic heterostructures. Acta Physica Sinica, 2024, 73(16): 167801. doi: 10.7498/aps.73.20240703
    [2] Zhou Da-Ren, Lu Huan-Cai, Cheng Xiang-Le, McFarland D. Michael. Reconstruction of half-space boundary impedance and sound source direct radiation based on reflection coefficient estimation. Acta Physica Sinica, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [3] Xu Yu-Pei, Li Shu. Modification of method of sampling radiation source particle in spherical geometry. Acta Physica Sinica, 2020, 69(11): 119501. doi: 10.7498/aps.69.20200024
    [4] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [5] Li Ting, Lu Xiao-Tong, Zhang Qiang, Kong De-Huan, Wang Ye-Bing, Chang Hong. Evaluation of blackbody-radiation frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [6] Fu Tao, Ouyang Zheng-Biao. Simulation of cherenkov radiation oscillation in a plasma-filled metallic photonic crystal. Acta Physica Sinica, 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [7] Li Na, Bai Ya, Liu Peng. Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses. Acta Physica Sinica, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [8] Wang Yu-Wen, Dong Zhi-Wei, Li Han-Yu, Zhou Xun, Luo Zhen-Fei. Atmospheric window characteristic and channel capacity of THz wave propagation. Acta Physica Sinica, 2016, 65(13): 134101. doi: 10.7498/aps.65.134101
    [9] Shi Wei, Yan Zhi-Jin. Research progress on avalanche multiplication GaAs photoconductive terahertz emitter. Acta Physica Sinica, 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [10] Li Shu, Deng Li, Tian Dong-Feng, Li Gang. A new sampling method based on radiation energy density for location of radiative source particles. Acta Physica Sinica, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [11] Li Shuang, Wang Jian-Guo, Tong Chang-Jiang, Wang Guang-Qiang, Lu Xi-Cheng, Wang Xue-Feng. Optimization of slow-wave structure in high power 0.34 THz radiation source. Acta Physica Sinica, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [12] Lu Ai-Jiang. SiBN ceramics, a stealth material at high temperature. Acta Physica Sinica, 2013, 62(21): 217101. doi: 10.7498/aps.62.217101
    [13] Cao Dong-Jie, Qie Xiu-Shu, Duan Shu, Xuan Yue-Jian, Wang Dong-Fang. Lightning discharge process based on short-baseline lightning VHF radiation source locating system. Acta Physica Sinica, 2012, 61(6): 069202. doi: 10.7498/aps.61.069202
    [14] Liu Li-Hui, Zou Hong-Xin, Liu Qu, Li Xi. Blackbody-radiation shift in a 199Hg+ ion optical frequency standard. Acta Physica Sinica, 2012, 61(10): 103101. doi: 10.7498/aps.61.103101
    [15] Li Lin-Qian, Shi Yan-Xiang, Wang Fei, Wei Bing. SO-FDTD method of analyzing the reflection and transmission coefficient of weakly ionized dusty plasma layer. Acta Physica Sinica, 2012, 61(12): 125201. doi: 10.7498/aps.61.125201
    [16] Gao Xi, Yang Zi-Qiang, Hou Jun, Qi Li-Mei, Lan Feng, Shi Zong-Jun, Li Da-Zhi, Liang Zheng. Relativistic Cherenkov source with modified photonic band-gap cells. Acta Physica Sinica, 2009, 58(2): 1105-1109. doi: 10.7498/aps.58.1105
    [17] Sun Hai-Yan, Jiao Chong-Qing, Luo Ji-Run. Influence of reflection of the output port on beam-wave interaction in gyrotron traveling wave amplifier. Acta Physica Sinica, 2009, 58(2): 925-929. doi: 10.7498/aps.58.925
    [18] Yang Juan, Zhu Liang-Ming, Su Wei-Yi, Mao Gen-Wang. Calculation of the wave reflecting characteristics of magnetized plasma surface. Acta Physica Sinica, 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
    [19] Su Wei-Yi, Yang Juan, Wei Kun, Mao Gen-Wang, He Hong-Qing. Calculation and analysis on the wave reflected characteristics of plasma before the conductor plate. Acta Physica Sinica, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [20] GAN DE-CHANG. . Acta Physica Sinica, 1995, 44(1): 137-141. doi: 10.7498/aps.44.137
Metrics
  • Abstract views:  4379
  • PDF Downloads:  107
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2022
  • Accepted Date:  03 April 2022
  • Available Online:  08 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回