-
Blackbody radiation source has been widely used as a calibration source for terahertz (THz) radiometers in recent decades with the applications of THz detection technology in the fields of aerospace, astronomy and remote sensing. We develop a THz blackbody calibration source capable of working in the cryogenic environment and having adjustable radiation power for the calibration of THz superconducting detectors. The ideal blackbody source has an emissivity and absorptivity of 1 and the reflectance coefficient is used to indirectly characterise the performance of the developed blackbody source. In this work, we use a mixture of epoxy, catalyst, carbon black and glass beads as blackbody absorbing material. The real part and imaginary part of the complex dielectric constant of Berkeley blackbody material are extracted from the THz time-domain spectra, and its reflection coefficient is measured. We use this material to design a conical blackbody radiation source , and simulate it as well. The simulation result show that it has low reflectivity below –35 dB in a frequency range of 0.2–0.5 THz. We fabricate a conical blackbody radiation source that is mounted in a dilution refrigerator, and use filters and light-guiding systems to make the detector for measuring the radiation by the THz light of a specific wavelength. The radiation power can be tuned by changing its temperature. The relationship between radiation power and temperature shows a power tuning range of 10–12–10–9 W in the frequency range of 0.2–0.5 THz with a minimum power value of 2.13 × 10–12 W. The designed blackbody radiation source can meet the calibration requirements of THz superconducting detectors, and will contribute to the development and application of highly sensitive THz radiometers.
-
Keywords:
- blackbody radiation source /
- terahertz time-domain spectroscopy /
- reflection coefficient /
- blackbody radiation power
[1] Grasset O, Dougherty M K, Coustenis A, Bunce E J, Erd C, Titov D, Blanc M, Coates A, Drossart P, Fletcher L N, Hussmann H, Jaumann R, Krupp N, Lebreton J P, Prieto-Ballesteros O, Tortora P, Tosi F, Hoolst T V 2013 Planet. Space Sci. 78 1Google Scholar
[2] Brown R L, Wild W, Cunningham C 2004 Adv. Space Res. 34 555Google Scholar
[3] Schröder A, Murk A, Wylde R, Jacob K, Pike K, Winser M, Pujades M B, Kangas V 2017 IEEE Trans. Terahertz Sci. Technol. 7 677Google Scholar
[4] Farrah D, Smith K E, Ardila D, Bradford C M, DiPirro M, Ferkinhoff C, Glenn J, Goldsmith P, Leisawitz D, Nikola T, Rangwala N, Rinehart S A, Staguhn J, Zemcov M, Zmuidzinas J, Bartlett J, Carey S, Fischer W J, Kamenetzky J, Kartaltepe J, Lacy M, Lis D C, Locke L, Lopez-Rodriguez E, MacGregor M, Mills E, Moseley S H, Murphy E J, Rhodes A, Richter M, Rigopoulou D, Sanders D, Sankrit R, Savini G, Smith J D, Stierwalt S 2019 J. Astron. Telesc. Inst. 5 020901
[5] Beyer A D, Kenyon M E, Echternach P M, Day P K, Bock J J, Holmes W A, Bradford C M 2012 J. Low Temp. Phys. 167 182Google Scholar
[6] Sizov F, Rogalski A 2010 Prog. Quantum Electron. 34 278Google Scholar
[7] Sizov F 2010 Opto-Electron. Rev. 18 10
[8] Baselmans J J A, Bueno J, Yates S J C, Yurduseven O, Llombart N, Karatsu K, Baryshev A M, Ferrari L, Endo A, Thoen D J, de Visser P J, Janssen R M J, Murugesan V, Driessen E F C, Coiffard G, Martin-Pintado J, Hargrave P, Griffin M 2017 Astron. Astrophys. 601 A89Google Scholar
[9] Shaw M D, Bueno J, Day P, Bradford C M, Echternach P M 2009 Phys. Rev. B 79 144511
[10] Bueno J, Shaw M D, Day P K, Echternach P M 2010 Appl. Phys. Lett. 96 103503Google Scholar
[11] Echternach P M, Pepper B J, Reck T, Bradford C M 2018 Nat. Astron. 2 90Google Scholar
[12] Randa J, Walker D K, Cox A E, Billinger R L 2005 IEEE Trans. Geosci. Remote Sens. 43 50Google Scholar
[13] Skou N, Le Vine D 2006 Microwave Radiometer Systems: Design and Analysis (Norwood : Artech House)
[14] Schröder A, Murk A, Wylde R, Schobert D, Winser M 2017 IEEE Trans. Geosci. Remote Sens. 55 7104Google Scholar
[15] Draper D W, Newell D A, Teusch D A, Yoho P K 2013 IEEE Trans. Geosci. Remote Sens. 51 4731Google Scholar
[16] Yagoubov P, Murk A, Wylde R, Bell G, Tan G H 2011 International Conference on Infrared, Millimeter, and Terahertz waves Houston, Texas, USA, October 2–7, 2011 p1
[17] Jacob K, Schroder A, Kotiranta M, Murk A 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves Copenhagen, Denmark, September 25–30, 2016 p1
[18] Shi Q, Li J, Zhi Q, Wang Z, Miao W, Shi S C 2022 Sci. China-Phys. Mech. Astron. 65 239511Google Scholar
[19] Houtz D A, Emery W, Gu D, Jacob K, Murk A, Walker D K, Wylde R J 2017 IEEE Trans. Geosci. Remote Sens. 55 4586Google Scholar
[20] Persky M J 1999 Rev. Sci. Instrum. 70 2193Google Scholar
[21] 韩晓惠, 张瑾, 杨晔, 马宇婷, 常天英, 崔洪亮 2016 光谱学与光谱分析 36 3449
Han X H, Zhang J, Yang Y, Ma Y T, Chang T Y, Cui H L 2016 Spectrosc. Spect. Anal. 36 3449
[22] Schröder A, Murk A 2016 IEEE Trans. Antennas Propag. 64 1850Google Scholar
[23] 石粒力, 吴敬波, 涂学凑, 金飚兵, 陈健, 吴培亨 2021 中国科学: 物理学 力学 天文学 51 054203Google Scholar
Shi L L, Wu J B, Tu X C, Jin B B, Chen J, Wu P H 2021 Sci. China-Phys. Mech. Astron. 51 054203Google Scholar
-
图 2 黑体材料介电常数的表征 (a) THz-TDS系统示意图; (b) 黑体材料的复介电常数实部与频率的关系, 左下角插图为填充黑体材料的矩形孔铜片样品照片; (c) 黑体材料复介电常数虚部与频率的关系
Figure 2. Permittivity of blackbody materials: (a) Schematic diagram of the THz - TDS system; (b) real part of permittivity for blackbody material versus frequency, the inset in the lower left corner is a photo of the copper sheet with a rectangular hole filled with blackbody material; (c) imaginary part of permittivity for blackbody material versus frequency.
图 3 黑体材料反射系数表征 (a) 反射型THz-TDS系统示意图; (b) 平面黑体涂层材料样品, 1, 2分别表示测试位置; (c) 样品表面粗糙度; (d) 不同位置的反射系数
Figure 3. Reflectance characterization of blackbody materials: (a) Schematic diagram of the reflective THz-TDS system; (b) flat blackbody sample, 1 and 2 indicate the two test positions; (c) surface roughness of the sample; (d) reflectance at different positions.
-
[1] Grasset O, Dougherty M K, Coustenis A, Bunce E J, Erd C, Titov D, Blanc M, Coates A, Drossart P, Fletcher L N, Hussmann H, Jaumann R, Krupp N, Lebreton J P, Prieto-Ballesteros O, Tortora P, Tosi F, Hoolst T V 2013 Planet. Space Sci. 78 1Google Scholar
[2] Brown R L, Wild W, Cunningham C 2004 Adv. Space Res. 34 555Google Scholar
[3] Schröder A, Murk A, Wylde R, Jacob K, Pike K, Winser M, Pujades M B, Kangas V 2017 IEEE Trans. Terahertz Sci. Technol. 7 677Google Scholar
[4] Farrah D, Smith K E, Ardila D, Bradford C M, DiPirro M, Ferkinhoff C, Glenn J, Goldsmith P, Leisawitz D, Nikola T, Rangwala N, Rinehart S A, Staguhn J, Zemcov M, Zmuidzinas J, Bartlett J, Carey S, Fischer W J, Kamenetzky J, Kartaltepe J, Lacy M, Lis D C, Locke L, Lopez-Rodriguez E, MacGregor M, Mills E, Moseley S H, Murphy E J, Rhodes A, Richter M, Rigopoulou D, Sanders D, Sankrit R, Savini G, Smith J D, Stierwalt S 2019 J. Astron. Telesc. Inst. 5 020901
[5] Beyer A D, Kenyon M E, Echternach P M, Day P K, Bock J J, Holmes W A, Bradford C M 2012 J. Low Temp. Phys. 167 182Google Scholar
[6] Sizov F, Rogalski A 2010 Prog. Quantum Electron. 34 278Google Scholar
[7] Sizov F 2010 Opto-Electron. Rev. 18 10
[8] Baselmans J J A, Bueno J, Yates S J C, Yurduseven O, Llombart N, Karatsu K, Baryshev A M, Ferrari L, Endo A, Thoen D J, de Visser P J, Janssen R M J, Murugesan V, Driessen E F C, Coiffard G, Martin-Pintado J, Hargrave P, Griffin M 2017 Astron. Astrophys. 601 A89Google Scholar
[9] Shaw M D, Bueno J, Day P, Bradford C M, Echternach P M 2009 Phys. Rev. B 79 144511
[10] Bueno J, Shaw M D, Day P K, Echternach P M 2010 Appl. Phys. Lett. 96 103503Google Scholar
[11] Echternach P M, Pepper B J, Reck T, Bradford C M 2018 Nat. Astron. 2 90Google Scholar
[12] Randa J, Walker D K, Cox A E, Billinger R L 2005 IEEE Trans. Geosci. Remote Sens. 43 50Google Scholar
[13] Skou N, Le Vine D 2006 Microwave Radiometer Systems: Design and Analysis (Norwood : Artech House)
[14] Schröder A, Murk A, Wylde R, Schobert D, Winser M 2017 IEEE Trans. Geosci. Remote Sens. 55 7104Google Scholar
[15] Draper D W, Newell D A, Teusch D A, Yoho P K 2013 IEEE Trans. Geosci. Remote Sens. 51 4731Google Scholar
[16] Yagoubov P, Murk A, Wylde R, Bell G, Tan G H 2011 International Conference on Infrared, Millimeter, and Terahertz waves Houston, Texas, USA, October 2–7, 2011 p1
[17] Jacob K, Schroder A, Kotiranta M, Murk A 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves Copenhagen, Denmark, September 25–30, 2016 p1
[18] Shi Q, Li J, Zhi Q, Wang Z, Miao W, Shi S C 2022 Sci. China-Phys. Mech. Astron. 65 239511Google Scholar
[19] Houtz D A, Emery W, Gu D, Jacob K, Murk A, Walker D K, Wylde R J 2017 IEEE Trans. Geosci. Remote Sens. 55 4586Google Scholar
[20] Persky M J 1999 Rev. Sci. Instrum. 70 2193Google Scholar
[21] 韩晓惠, 张瑾, 杨晔, 马宇婷, 常天英, 崔洪亮 2016 光谱学与光谱分析 36 3449
Han X H, Zhang J, Yang Y, Ma Y T, Chang T Y, Cui H L 2016 Spectrosc. Spect. Anal. 36 3449
[22] Schröder A, Murk A 2016 IEEE Trans. Antennas Propag. 64 1850Google Scholar
[23] 石粒力, 吴敬波, 涂学凑, 金飚兵, 陈健, 吴培亨 2021 中国科学: 物理学 力学 天文学 51 054203Google Scholar
Shi L L, Wu J B, Tu X C, Jin B B, Chen J, Wu P H 2021 Sci. China-Phys. Mech. Astron. 51 054203Google Scholar
Catalog
Metrics
- Abstract views: 4379
- PDF Downloads: 107
- Cited By: 0