Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Entanglement detection and classification of multi-qubit GHZ state, ${\mathrm{W}}\overline{{\mathrm{W}}} $ state, and SGT state under one-axis twisting model

LI Yan REN Zhihong

Citation:

Entanglement detection and classification of multi-qubit GHZ state, ${\mathrm{W}}\overline{{\mathrm{W}}} $ state, and SGT state under one-axis twisting model

LI Yan, REN Zhihong
cstr: 32037.14.aps.74.20250715
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Entanglement detection and classification of different kinds of entangled states in quantum many-body systems have always been a key topic in quantum information and quantum computation. In this work, we investigate the entanglement detection and classification of three special entangled states: 4-qubit GHZ state, 4-qubit $ {\mathrm{W}}\overline{{\mathrm{W}}} $ state, and 4-qubit SGT state, which cannot be distinguished by the general quantum Fisher information (QFI) under the usual local operations. By utilizing the experimentally mature and controllable one-axis twisting model, along with optimized rotations and adjustable interaction strength, we successfully classify the three states by QFI. Additionally, we also study the effects of four types of environmental noise on entanglement detection, namely, bit-flip channel, amplitude-damping channel, phase-damping channel, and depolarizing channel. The results show that under local operations, the changes of the QFI from the 4-qubit GHZ state with decoherence parameter p in four noise channels are significantly different from those of the $ {\mathrm{W}}\overline{{\mathrm{W}}} $ state and SGT state, and thus making them distinguished. However, the QFI about the $ {\mathrm{W}}\overline{{\mathrm{W}}} $ state and the QFI about the SGT state exhibit the same variations and cannot be classified. In the one-axis twisting model, the variation curves of the QFI of the three states under the four noise channels are different from each other, which can be clearly observed. It should be noted that in the bit-flip channel, the QFI curves of the $ {\mathrm{W}}\overline{{\mathrm{W}}} $ state and the SGT state overlaps in the middle region ($ p\approx0.5 $), which prevents their classification. Our work provides a new method for entanglement detection and classification in quantum many-body systems, which will contribute to future research in quantum science and technology.
      Corresponding author: LI Yan, li8989971@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12305024, 12205176, 92365116), the Applied Basic Research Program of Shanxi Province, China (Grant Nos. 202203021212193, 202203021212387, 202103021223251), and the Young Academic Leaders of Higher Learning Institutions of Shanxi Province, China (Grant No. 2024Q035).
    [1]

    Gühne O, Tóth G 2009 Phys. Rep. 474 1Google Scholar

    [2]

    Chefles A 2010 Contemp. Phys. 41 401

    [3]

    Bae J, Kwek L C 2015 J. Phys. A 48 083001Google Scholar

    [4]

    Friis N, Vitagliano G, Malik M, Huber M 2019 Nat. Rev. Phys. 1 72

    [5]

    Chen D X, Zhang Y, Zhao J L, Wu Q C, Fang Y L, Yang C P, Nori F 2022 Phys. Rev. A 106 022438Google Scholar

    [6]

    Zhu C H, Shi T T, Ding L Y, Zheng Z Y, Zhang X, Zhang W 2025 arXiv: 2502.20717v1 [quant-ph]

    [7]

    Cramer M, Plenio M B, Flammia S T, Somma R, Gross D, Bartlett S D, Landon-Cardinal O, Poulin D, Liu Y K 2010 Nat. Commun. 1 149Google Scholar

    [8]

    Wang T T, Song M H, Lyu L K, Witczak-Krempa W, Meng Z Y 2025 Nat. Commun. 16 96Google Scholar

    [9]

    He L, Zhao Q, Li Z D, Yin X F, Yuan X, Hung J C, Chen L K, Li L, Liu N L, Peng C Z, Liang Y C, Ma X F, Chen Y A, Pan J W 2018 Phys. Rev. X 8 021072

    [10]

    Zwerger M, Dür W, Bancal J D, Sekatski P 2019 Phys. Rev. Lett. 122 060502Google Scholar

    [11]

    Pezzè L, Smerzi A 2009 Phys. Rev. Lett. 102 100401Google Scholar

    [12]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezzè L, Smerzi A 2012 Phys. Rev. A 85 022321Google Scholar

    [13]

    Huang Y L, Che L Y, Wei C, Xu F, Nie X F, Li J, Lu D W, Xin T 2025 npj Quantum Inf. 11 29Google Scholar

    [14]

    Ayachi F E, Mansour H A, Baz M E 2025 Commun. Theor. Phys. 77 065104Google Scholar

    [15]

    Feng T F, Vedral V 2022 Phys. Rev. D 106 066013Google Scholar

    [16]

    Li L J, Fan X G, Song X K, Ye L, Wang D 2024 Phys. Rev. A 110 012418Google Scholar

    [17]

    丘尚锋, 徐桥, 周晓祺 2025 物理学报 74 110301Google Scholar

    Qiu S F, Xu Q, Zhou X Q 2025 Acta Phys. Sin. 74 110301Google Scholar

    [18]

    Li H, Gao T, Yan F L 2024 Phys. Rev. A 109 012213Google Scholar

    [19]

    Dong D D, Li L J, Song X K, Ye L, Wang D 2024 Phys. Rev. A 110 032420Google Scholar

    [20]

    Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezzè L, Smerzi A, Oberthaler M K 2014 Science 345 424

    [21]

    Pezzè L, Li Y, Li W D, Smerzi A 2016 Proc. Natl. Acad. Sci. 113 11459Google Scholar

    [22]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [23]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta. Phys. Sin. 68 040601Google Scholar

    [24]

    Qin Z Z, Gessner M, Ren Z H, Deng X W, Han D M, Li W D, Su X L, Smerzi A, Peng K C 2019 npj Quantum Inf. 5 3Google Scholar

    [25]

    Ren Z H, Li W D, Smerzi A, Gessner M 2021 Phys. Rev. Lett. 126 080502Google Scholar

    [26]

    Xu K, Zhang Y R, Sun Z H, Li H, Song P T, Xiang Z C, Huang K X, Li H, Shi Y H, Chen C T, Song X H, Zheng D N, Nori F, Wang H, Fan H 2022 Phys. Rev. Lett. 128 150501Google Scholar

    [27]

    Li Y, Ren Z H 2023 Phys. Rev. A 107 012403Google Scholar

    [28]

    Li Y, Ren Z H 2024 Chaos, Solitons and Fractals 186 115299Google Scholar

    [29]

    郑盟锟, 尤力 2018 物理学报 67 160303Google Scholar

    Tey M K, You L 2018 Acta Phys. Sin. 67 160303Google Scholar

    [30]

    Fisher R A 1922 Philos. Trans. R. Soc. Lond. Ser. A 222 309Google Scholar

    [31]

    Cramér H 1946 Mathematical Methods of Statistics (Princeton: Princeton University

    [32]

    Li Y, Pezzè L, Gessner M, Ren Z H, Li W D, Smerzi A 2018 Entropy 20 628Google Scholar

    [33]

    Nolan S, Smerzi A, Pezze L 2021 npj Quantum Inf. 7 169Google Scholar

    [34]

    Han C Y, Ma Z, Qiu Y X, Fang R H, Wu J T, Zhan C, Li M J, Huang J H, Lu B, Lee C H 2024 Phys. Rev. Applied 22 044058Google Scholar

    [35]

    Li Y, Ren Z H 2022 Physica A 596 127137Google Scholar

    [36]

    Imai S, Smerzi A, Pezze L 2025 Phys. Rev. A 111 L020402Google Scholar

    [37]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [38]

    Shen Y, Zhou J G, Huang J H, Lee C H 2024 Phys. Rev. A 110 042619Google Scholar

    [39]

    Fortes R, Rigolin G 2015 Phys. Rev. A 92 012338Google Scholar

    [40]

    Kraus K 1983 States, Effects and Operations: Fundamental Notions of Quantum Theory (Berlin: Springer-Verlag) pp1–12

    [41]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp473–497

  • 图 1  4量子比特GHZ态、$ {\mathrm{W}}\overline{{\mathrm{W}}} $态和SGT态在单轴旋转模型下的量子Fisher信息. 黑色圆点、蓝色三角形、红色方块依次表示GHZ态、$ {\mathrm{W}}\overline{{\mathrm{W}}} $态和SGT态的量子Fisher信息随相互作用参数γ的变化结果 (a)彼此独立优化旋转方向n下的结果((25)式); (b)单轴旋转为x轴的结果((26)式); (c)单轴旋转为y轴的结果((27)式); (d)单轴旋转为z轴的结果((29)式)

    Figure 1.  The QFI of the 4-qubit GHZ state, $ {\mathrm{W}}\overline{{\mathrm{W}}} $ state and SGT state under the one-axis twisting model. Black dots, blue triangles and red squares represent the QFI of the GHZ state, $ {\mathrm{W}}\overline{{\mathrm{W}}} $, and SGT state with respect to the interaction parameter γ: (a) The results under the condition that the rotation directions n are optimized independently (Eq. (25)); (b) the results when the rotation is along the x-axis (Eq. (26)); (c) the results when the rotation is along the y-axis (Eq. (27)); (d) the results when the rotation is along the z-axis (Eq. (29)).

    图 2  在局域操作下, 4量子比特GHZ态、$ {\mathrm{W}}\overline{{\mathrm{W}}} $态和SGT态在比特翻转、相位阻尼、振幅阻尼和去极化通道下的量子Fisher信息. 黑色圆点、蓝色三角形、红色方块依次表示GHZ态、$ {\mathrm{W}}\overline{{\mathrm{W}}} $态和SGT态的量子Fisher信息随退相干参数p的变化结果 (a)量子态在比特翻转通道下的结果; (b)量子态在相位阻尼通道中的结果; (c)在振幅阻尼通道中的结果; (d)在去极化通道下的结果

    Figure 2.  The QFI of the 4-qubit GHZ state, $ {\mathrm{W}}\overline{{\mathrm{W}}} $ state and SGT state under the bit-flip, phase damping, amplitude damping, and depolarizing channels with local operations. Black dots, blue triangles and red squares represent the QFI of the GHZ state, $ {\mathrm{W}}\overline{{\mathrm{W}}} $, and SGT state with respect to the decoherence parameter p: (a) The results under the bit-flip channel; (b) the results under the phase damping channel; (c) the results under the amplitude damping channel; (d) the results under the depolarizing channel.

    图 3  在单轴旋转模型下($ \gamma=2 $), 4量子比特GHZ态、$ {\mathrm{W}}\overline{{\mathrm{W}}} $态和SGT态在比特翻转、相位阻尼、振幅阻尼和去极化通道下的量子Fisher信息. 黑色圆点、蓝色三角形、红色方块依次表示GHZ态、$ {\mathrm{W}}\overline{{\mathrm{W}}} $态和SGT态的量子Fisher信息随退相干参数p的变化结果 (a)量子态在比特翻转通道下的结果; (b)量子态在相位阻尼通道中的结果; (c)振幅阻尼通道中的结果; (d)去极化通道下的结果

    Figure 3.  The QFI of the 4-qubit GHZ state, $ {\mathrm{W}}\overline{{\mathrm{W}}} $ state and SGT state under the bit-flip, phase damping, amplitude damping, and depolarizing channels in the one-axis twisting model ($ \gamma=2 $). Black dots, blue triangles and red squares represent the QFI of the GHZ state, $ {\mathrm{W}}\overline{{\mathrm{W}}} $, and SGT state with respect to the decoherence parameter p: (a) The results under the bit-flip channel; (b) the results under the phase damping channel; (c) the results under the amplitude damping channel; (d) the results under the depolarizing channel.

    图 4  在单轴旋转模型下($ \gamma=5 $), 4量子比特GHZ态、$ {\mathrm{W}}\overline{{\mathrm{W}}} $态和SGT态在比特翻转、相位阻尼、振幅阻尼和去极化通道下的量子Fisher信息. 黑色圆点、蓝色三角形、红色方块依次表示GHZ态、$ {\mathrm{W}}\overline{{\mathrm{W}}} $态和SGT态的量子Fisher信息随退相干参数p的变化结果 (a)量子态在比特翻转通道下的结果; (b)量子态在相位阻尼通道中的结果; (c)在振幅阻尼通道中的结果; (d)在去极化通道下的结果

    Figure 4.  The QFI of the 4-qubit GHZ state, $ {\mathrm{W}}\overline{{\mathrm{W}}} $ state and SGT state under the bit-flip, phase damping, amplitude damping, and depolarizing channels in the one-axis twisting model ($ \gamma=5 $). Black dots, blue triangles and red squares represent the QFI of the GHZ state, $ {\mathrm{W}}\overline{{\mathrm{W}}} $ and SGT state with respect to the decoherence parameter p: (a) The results under the bit-flip channel; (b) the results under the phase damping channel; (c) the results under the amplitude damping channel; (d) the results under the depolarizing channel.

  • [1]

    Gühne O, Tóth G 2009 Phys. Rep. 474 1Google Scholar

    [2]

    Chefles A 2010 Contemp. Phys. 41 401

    [3]

    Bae J, Kwek L C 2015 J. Phys. A 48 083001Google Scholar

    [4]

    Friis N, Vitagliano G, Malik M, Huber M 2019 Nat. Rev. Phys. 1 72

    [5]

    Chen D X, Zhang Y, Zhao J L, Wu Q C, Fang Y L, Yang C P, Nori F 2022 Phys. Rev. A 106 022438Google Scholar

    [6]

    Zhu C H, Shi T T, Ding L Y, Zheng Z Y, Zhang X, Zhang W 2025 arXiv: 2502.20717v1 [quant-ph]

    [7]

    Cramer M, Plenio M B, Flammia S T, Somma R, Gross D, Bartlett S D, Landon-Cardinal O, Poulin D, Liu Y K 2010 Nat. Commun. 1 149Google Scholar

    [8]

    Wang T T, Song M H, Lyu L K, Witczak-Krempa W, Meng Z Y 2025 Nat. Commun. 16 96Google Scholar

    [9]

    He L, Zhao Q, Li Z D, Yin X F, Yuan X, Hung J C, Chen L K, Li L, Liu N L, Peng C Z, Liang Y C, Ma X F, Chen Y A, Pan J W 2018 Phys. Rev. X 8 021072

    [10]

    Zwerger M, Dür W, Bancal J D, Sekatski P 2019 Phys. Rev. Lett. 122 060502Google Scholar

    [11]

    Pezzè L, Smerzi A 2009 Phys. Rev. Lett. 102 100401Google Scholar

    [12]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezzè L, Smerzi A 2012 Phys. Rev. A 85 022321Google Scholar

    [13]

    Huang Y L, Che L Y, Wei C, Xu F, Nie X F, Li J, Lu D W, Xin T 2025 npj Quantum Inf. 11 29Google Scholar

    [14]

    Ayachi F E, Mansour H A, Baz M E 2025 Commun. Theor. Phys. 77 065104Google Scholar

    [15]

    Feng T F, Vedral V 2022 Phys. Rev. D 106 066013Google Scholar

    [16]

    Li L J, Fan X G, Song X K, Ye L, Wang D 2024 Phys. Rev. A 110 012418Google Scholar

    [17]

    丘尚锋, 徐桥, 周晓祺 2025 物理学报 74 110301Google Scholar

    Qiu S F, Xu Q, Zhou X Q 2025 Acta Phys. Sin. 74 110301Google Scholar

    [18]

    Li H, Gao T, Yan F L 2024 Phys. Rev. A 109 012213Google Scholar

    [19]

    Dong D D, Li L J, Song X K, Ye L, Wang D 2024 Phys. Rev. A 110 032420Google Scholar

    [20]

    Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezzè L, Smerzi A, Oberthaler M K 2014 Science 345 424

    [21]

    Pezzè L, Li Y, Li W D, Smerzi A 2016 Proc. Natl. Acad. Sci. 113 11459Google Scholar

    [22]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [23]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta. Phys. Sin. 68 040601Google Scholar

    [24]

    Qin Z Z, Gessner M, Ren Z H, Deng X W, Han D M, Li W D, Su X L, Smerzi A, Peng K C 2019 npj Quantum Inf. 5 3Google Scholar

    [25]

    Ren Z H, Li W D, Smerzi A, Gessner M 2021 Phys. Rev. Lett. 126 080502Google Scholar

    [26]

    Xu K, Zhang Y R, Sun Z H, Li H, Song P T, Xiang Z C, Huang K X, Li H, Shi Y H, Chen C T, Song X H, Zheng D N, Nori F, Wang H, Fan H 2022 Phys. Rev. Lett. 128 150501Google Scholar

    [27]

    Li Y, Ren Z H 2023 Phys. Rev. A 107 012403Google Scholar

    [28]

    Li Y, Ren Z H 2024 Chaos, Solitons and Fractals 186 115299Google Scholar

    [29]

    郑盟锟, 尤力 2018 物理学报 67 160303Google Scholar

    Tey M K, You L 2018 Acta Phys. Sin. 67 160303Google Scholar

    [30]

    Fisher R A 1922 Philos. Trans. R. Soc. Lond. Ser. A 222 309Google Scholar

    [31]

    Cramér H 1946 Mathematical Methods of Statistics (Princeton: Princeton University

    [32]

    Li Y, Pezzè L, Gessner M, Ren Z H, Li W D, Smerzi A 2018 Entropy 20 628Google Scholar

    [33]

    Nolan S, Smerzi A, Pezze L 2021 npj Quantum Inf. 7 169Google Scholar

    [34]

    Han C Y, Ma Z, Qiu Y X, Fang R H, Wu J T, Zhan C, Li M J, Huang J H, Lu B, Lee C H 2024 Phys. Rev. Applied 22 044058Google Scholar

    [35]

    Li Y, Ren Z H 2022 Physica A 596 127137Google Scholar

    [36]

    Imai S, Smerzi A, Pezze L 2025 Phys. Rev. A 111 L020402Google Scholar

    [37]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [38]

    Shen Y, Zhou J G, Huang J H, Lee C H 2024 Phys. Rev. A 110 042619Google Scholar

    [39]

    Fortes R, Rigolin G 2015 Phys. Rev. A 92 012338Google Scholar

    [40]

    Kraus K 1983 States, Effects and Operations: Fundamental Notions of Quantum Theory (Berlin: Springer-Verlag) pp1–12

    [41]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp473–497

  • [1] LI Yan, REN Zhihong. Quantum entanglement detection and classification of multipartite ${\boldsymbol{W}}\overline{{\boldsymbol{W}}} $ state under the white noise environment. Acta Physica Sinica, 2025, 74(19): 190301. doi: 10.7498/aps.74.20250221
    [2] Ren Ya-Lei, Zhou Tao. Quantum Fisher information in moving reference frame. Acta Physica Sinica, 2024, 73(5): 050601. doi: 10.7498/aps.73.20231394
    [3] Zhou Xian-Tao, Jiang Ying-Hua. Quantum secure direct communication scheme with identity authentication. Acta Physica Sinica, 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [4] Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua. Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information. Acta Physica Sinica, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [5] Li Jing, Ding Hai-Tao, Zhang Dan-Wei. Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians. Acta Physica Sinica, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [6] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [7] Niu Ming-Li, Wang Yue-Ming, Li Zhi-Jian. Estimation of light-matter coupling constant under dispersive interaction based on quantum Fisher information. Acta Physica Sinica, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [8] He Zhi, Jiang Deng-Kui, Li Yan. Non-Markovian measure independent of initial states of open systems. Acta Physica Sinica, 2022, 71(21): 210303. doi: 10.7498/aps.71.20221053
    [9] Tang Jie, Shi Lei, Wei Jia-Hua, Yu Hui-Cun, Xue Yang, Wu Tian-Xiong. Multi-party quantum key agreement based on d-level GHZ states. Acta Physica Sinica, 2020, 69(20): 200301. doi: 10.7498/aps.69.20200799
    [10] Ren Zhi-Hong, Li Yan, Li Yan-Na, Li Wei-Dong. Development on quantum metrology with quantum Fisher information. Acta Physica Sinica, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [11] Wu Ying, Li Jin-Fang, Liu Jin-Ming. Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements. Acta Physica Sinica, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [12] Zhao Jun-Long, Zhang Yi-Dan, Yang Ming. Influence of noice on tripartite quantum probe state. Acta Physica Sinica, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [13] Guo Hong. Effects of initial states on the quantum correlation in Bose-Hubbard model. Acta Physica Sinica, 2015, 64(22): 220301. doi: 10.7498/aps.64.220301
    [14] Chang Feng, Wang Xiao-Qian, Gai Yong-Jie, Yan Dong, Song Li-Jun. Quantum Fisher information and spin squeezing in the interaction system of light and matter. Acta Physica Sinica, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [15] Wang Xiao-Qin, Lu Huai-Xin, Zhao Jia-Qiang. Entanglement and nonlocality for generalized Greenberger-Horne-Zeilinger state. Acta Physica Sinica, 2011, 60(11): 110301. doi: 10.7498/aps.60.110301
    [16] Song Li-Jun, Yan Dong, Liu Yie. Quantum Fisher information and chaos in the system of Bose-Einstein condensate. Acta Physica Sinica, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [17] Gu Yong-Jian, Chen Xiao-Dong, Lin Xiu-Min, Xiao Shao-Jun. Implementation of photon Bell-state and GHZ-state analyzers through the Faraday rotation. Acta Physica Sinica, 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [18] Zha Xin-Wei, Zhang Chun-Min. Teleportation of on N-particle GHZ state via one three-particle W state. Acta Physica Sinica, 2008, 57(3): 1339-1342. doi: 10.7498/aps.57.1339
    [19] Zheng Yi-Zhuang, Dai Ling-Yu, Guo Guang-Can. Teleportation of a three-particle entangled W state through two-particle entangl ed quantum channels. Acta Physica Sinica, 2003, 52(11): 2678-2682. doi: 10.7498/aps.52.2678
    [20] LIN XIU, LI HONG-CAI. PREPARATION OF MULTI-ATIOM GHZ STATES VIA THE RAMAN INTERACTION OF V-TYPE THREE-LEVEL ATOMSAND ONE CAVITY-FIELD. Acta Physica Sinica, 2001, 50(9): 1689-1692. doi: 10.7498/aps.50.1689
Metrics
  • Abstract views:  557
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2025
  • Accepted Date:  27 July 2025
  • Available Online:  26 August 2025
  • Published Online:  20 October 2025
  • /

    返回文章
    返回