Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on mode transition of micro-newton-level cusped field Hall thruster

WU Jiahao ZENG Ming LIU Hui YU Daren

Citation:

Research on mode transition of micro-newton-level cusped field Hall thruster

WU Jiahao, ZENG Ming, LIU Hui, YU Daren
cstr: 32037.14.aps.74.20251214
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The micro-newton-level cusped field Hall thruster is an electric propulsion device that employs microwave-assisted ionization control. It serves as an actuator in drag-free control systems, ensuring control accuracy and stability by providing continuously adjustable thrust over a wide range. However, a mode transition occurring in the regulation process can lead to a sudden change in anode current, thereby degrading control precision and stability. Therefore, it is necessary to investigate the underlying patterns of mode transition. This study examines the variations in internal plasma parameters and discharge characteristics of the thruster before and after microwave mode transition, primarily through probe diagnostics. Experimental results indicate that prior to mode transition, the plasma luminous region is primarily concentrated within the electron cyclotron resonance (ECR) area, approximately 1–3 mm upstream of the anode. After the transition, the luminous region moves further upstream, and the plasma density near the anode exceeds the cutoff density, dropping sharply along the axial direction. The fundamental cause of the change in electron heating mechanism is the alteration in the propagation characteristics of fundamental waves due to this plasma density variation. When the plasma density rises to the cutoff density, the R-wave and O-wave, which drive ionization, are rapidly attenuated or reflected. At this point, the R-wave cannot reach the resonance layer, causing the dominant ECR ionization to become ineffective. The ionization mechanism shifts from being dominated by the R-wave and O-wave to being dominated primarily by the O-wave. Consequently, the electron heating mechanism shifts from volume heating to surface wave heating. This research will provide a basis for subsequently optimizing microwave transmission in the thruster and for reducing the threshold at which mode transition occurs.
      Corresponding author: ZENG Ming, sasuke250@sina.com ; YU Daren, yudaren@hit.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFC2201000).
    [1]

    Kawamura S, Nakamura T, Ando M, I–II–et al. 2006 Classical Quantum Gravity 23 S125Google Scholar

    [2]

    Cornelisse J W 1996 Classical Quantum Gravity 13 A251Google Scholar

    [3]

    Vetrugno D 2017 Int. J. Mod. Phys. D 26 1741023Google Scholar

    [4]

    Mueller G 2024 Optics and Photonics for Advanced Dimensional Metrology III Strasbourg, FRANCE 2024 p27

    [5]

    Sala L 2025 IL Nuovo Cimento C 48 103

    [6]

    Cui K, Liu H, Jiang W, Yu D 2020 Microgravity Sci. Technol. 32 189Google Scholar

    [7]

    Liu H, Zeng M, Niu X, Huang H Y, Yu D R 2021 Appl. Sci. -Basel 11 6549Google Scholar

    [8]

    Liu H, Niu X, Zeng M, Wang S S, Cui K, Yu D R 2022 Acta Astronaut. 193 496Google Scholar

    [9]

    Chen Y, Wu J, Shen Y, Cao S 2024 Aerospace 11 329Google Scholar

    [10]

    Liu H, Zeng M, Chen Z, Qiao L, Huang H, Yu D 2021 Plasma Sources Sci. Technol. 30 09LT01Google Scholar

    [11]

    Zeng M, Liu H, Chen Z, Huang H, Yu D 2021 Vacuum 192 110486Google Scholar

    [12]

    Zeng M, Liu H, Chen Y, Wu J, Wang S, Huang H, Yu D 2022 Vacuum 205 111486Google Scholar

    [13]

    Zeng M, Liu H, Huang H, Yu D 2023 J. Phys. D: Appl. Phys. 56 215203Google Scholar

    [14]

    Fukuda T, Ueda S, Ohnishi Y, Inomoto M, Abe T 2008 RARIFIED GAS DYNAMICS: Proceedings of the 26th International Symposium on Rarified Gas Dynamics Kyoto (Japan), June 20–July 25, 2008 pp923−928

    [15]

    Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propul. Power 30 1383Google Scholar

    [16]

    Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronaut. 157 425Google Scholar

    [17]

    Tani Y, Yamashita Y, Tsukizaki R, Nishiyama K, Kuninaka H 2020 Acta Astronaut. 176 77Google Scholar

    [18]

    Yamashita Y, Tsukizaki R, Daiki K, Tani Y, Shirakawa R, Hattori K, Nishiyama K 2021 Acta Astronaut. 185 179Google Scholar

    [19]

    Yamashita Y, Tsukizaki R, Nishiyama K 2021 Plasma Sources Sci. Technol. 30 095023Google Scholar

    [20]

    Gao Y, Fan W, Hu P, Liu H, Yu D 2020 Plasma Sources Sci. Technol. 29 095021Google Scholar

    [21]

    Yang Y R, Fu S H, Ding Z F 2022 AIP Adv. 12 055325Google Scholar

    [22]

    Li J, Fu S, Yang Y, Ding Z 2021 Plasma Sci. Technol. 23 085506Google Scholar

    [23]

    Fu S H, Ding Z F 2021 Phys. Plasmas 28 033510Google Scholar

    [24]

    Fu S H, Ding Z F 2021 Plasma Sources Sci. Technol. 30 125004Google Scholar

    [25]

    Ding Z F, Yang Y R, Fu S H 2023 AIP Adv. 13 095007Google Scholar

    [26]

    Fu S H, Tian L C, Ding Z F 2022 Plasma Sources Sci. Technol. 31 025004Google Scholar

    [27]

    Zeng M, Liu H, Huang H, Yu D 2023 Plasma Sources Sci. Technol. 32 095014Google Scholar

    [28]

    Chen F F, Arnush D 2001 Phys. Plasmas 8 5051Google Scholar

    [29]

    Sugai H, Ghanashev I, Mizuno K 2000 Appl. Phys. Lett. 77 3523Google Scholar

    [30]

    Bittencourt J A 2004 Fundamentals of Plasma Physics (New York: Springer New York) pp400–452

    [31]

    李鑫, 曾明, 刘辉, 宁中喜, 于达仁 2023 物理学报 72 225202Google Scholar

    Li X, Zeng M, Liu H, Ning Z X, Yu D R 2023 Acta Phys. Sin. 72 225202Google Scholar

  • 图 1  微波调节中的模式转换

    Figure 1.  Mode transition during microwave regulation.

    图 2  推力器示意图 (a) 推力器结构; (b) 推力器磁场分布

    Figure 2.  Schematic of the thruster: (a) Structure; (b) magnetic field distribution.

    图 3  Faraday探针、Langmuir探针测量系统

    Figure 3.  Schematic of the Faraday probe and Langmuir probe measurement system.

    图 4  阳极电压、微波功率调节结果 (a) 4 W微波功率下调控阳极电压300—700 V, 阳极电流变化结果; (b) 500 V阳极电压下调控微波功率1—5 W, 阳极电流变化结果

    Figure 4.  Results of anode voltage and microwave power regulation: (a) Variation of anode current with anode voltage regulated from 300 to 700 V at a fixed microwave power of 4 W; (b) variation of anode current with microwave power regulated from 1 to 5 W at a fixed anode voltage of 500 V.

    图 5  两种不同工况下等离子体亮区的分布 (a) 0.3 sccm/2 W工况在等离子体亮区阳极前端; (b) 0.4 sccm/4 W工况等离子体亮区退至阳极端面后

    Figure 5.  Distribution of the plasma luminous region under two different operating conditions: (a) Distribution of the plasma luminous region upstream of the anode under the condition of 0.3 sccm and 2 W; (b) plasma luminous region recedes downstream beyond the anode end-face under the condition of 0.4 sccm and 4 W.

    图 6  电压调控下两种典型工况阳极电流与驻波比/反射系数的结果

    Figure 6.  Anode current and VSWR/reflection coefficient results under two typical operating conditions with voltage regulation.

    图 7  无直流电压下驻波比与反射系数随着调控参数而发生突变 (a) 1—5 W微波功率变化下驻波比与反射系数显著增大; (b) 0.1—0.5 sccm工质流量下驻波比与反射系数显著增大

    Figure 7.  Abrupt changes in VSWR and reflection coefficient with control parameters in the absence of a DC voltage: (a) Significant increase in VSWR and reflection coefficient with microwave power varied from 1 to 5 W; (b) sharp rise in VSWR and reflection coefficient with propellant flow rate adjusted from 0.1 to 0.5 sccm.

    图 8  2 W/0.3 sccm(模式转换前)和4 W/0.4 sccm(模式转换后)羽流离子电流分布

    Figure 8.  Plume ion current distribution at 2 W/0.3 sccm (before mode transition) and 4 W/0.4 sccm (after mode transition).

    图 9  模式转换前后测量点的I-V曲线 (a) 模式转换前X = –1—4 mm的I-V曲线; (b) 模式转换后X = –1—4 mm处的I-V曲线

    Figure 9.  I-V curves at the measurement points before and after mode transition: (a) I-V curves at positions from X = –1 to 4 mm before mode transition; (b) I-V curves at positions from X = –1 to 4 mm after mode transition.

    图 10  模式转换前后I-V曲线的一阶导数分布 (a) 模式转换前X = –1—4 mm I-V曲线的一阶导数分布; (b) 模式转换后X = –1—4 mm I-V曲线的一阶导数分布

    Figure 10.  Profiles of the first derivative of the I-V curves before and after mode transition: (a) Distribution of the first derivative for I-V curves at X = –1 to 4 mm before mode transition; (b) distribution of the first derivative for I-V curves at X = –1 to 4 mm after mode transition.

    图 11  模式转换前后电子温度拟合曲线 (a) 模式转换前X = –1—4 mm测点处电子温度拟合直线; (b) 模式转换后X = –1—4 mm测点处电子温度拟合直线

    Figure 11.  Fitting curves for electron temperature before and after mode transition: (a) Linear fits to the electron temperature at measurement points from X = –1 to 4 mm before mode transition; (b) linear fits to the electron temperature at measurement points from X = –1 to 4 mm after mode transition.

    图 12  模式转换过程中推力器通道内等离子体参数的变化 (a) 模式转换前通道内各测点的电子温度及等离子体密度; (b) 模式转换后通道内各测点的电子温度及等离子体密度

    Figure 12.  Evolution of plasma parameters within the thruster channel during the mode transition process: (a) Electron temperature and plasma density at various measurement locations within the channel before mode transition; (b) electron temperature and plasma density at various measurement locations within the channel after mode transition.

    图 13  R波和O波在磁化等离子体中的传播特性

    Figure 13.  Propagation characteristics of R-wave and O-wave in magnetized plasma.

  • [1]

    Kawamura S, Nakamura T, Ando M, I–II–et al. 2006 Classical Quantum Gravity 23 S125Google Scholar

    [2]

    Cornelisse J W 1996 Classical Quantum Gravity 13 A251Google Scholar

    [3]

    Vetrugno D 2017 Int. J. Mod. Phys. D 26 1741023Google Scholar

    [4]

    Mueller G 2024 Optics and Photonics for Advanced Dimensional Metrology III Strasbourg, FRANCE 2024 p27

    [5]

    Sala L 2025 IL Nuovo Cimento C 48 103

    [6]

    Cui K, Liu H, Jiang W, Yu D 2020 Microgravity Sci. Technol. 32 189Google Scholar

    [7]

    Liu H, Zeng M, Niu X, Huang H Y, Yu D R 2021 Appl. Sci. -Basel 11 6549Google Scholar

    [8]

    Liu H, Niu X, Zeng M, Wang S S, Cui K, Yu D R 2022 Acta Astronaut. 193 496Google Scholar

    [9]

    Chen Y, Wu J, Shen Y, Cao S 2024 Aerospace 11 329Google Scholar

    [10]

    Liu H, Zeng M, Chen Z, Qiao L, Huang H, Yu D 2021 Plasma Sources Sci. Technol. 30 09LT01Google Scholar

    [11]

    Zeng M, Liu H, Chen Z, Huang H, Yu D 2021 Vacuum 192 110486Google Scholar

    [12]

    Zeng M, Liu H, Chen Y, Wu J, Wang S, Huang H, Yu D 2022 Vacuum 205 111486Google Scholar

    [13]

    Zeng M, Liu H, Huang H, Yu D 2023 J. Phys. D: Appl. Phys. 56 215203Google Scholar

    [14]

    Fukuda T, Ueda S, Ohnishi Y, Inomoto M, Abe T 2008 RARIFIED GAS DYNAMICS: Proceedings of the 26th International Symposium on Rarified Gas Dynamics Kyoto (Japan), June 20–July 25, 2008 pp923−928

    [15]

    Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propul. Power 30 1383Google Scholar

    [16]

    Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronaut. 157 425Google Scholar

    [17]

    Tani Y, Yamashita Y, Tsukizaki R, Nishiyama K, Kuninaka H 2020 Acta Astronaut. 176 77Google Scholar

    [18]

    Yamashita Y, Tsukizaki R, Daiki K, Tani Y, Shirakawa R, Hattori K, Nishiyama K 2021 Acta Astronaut. 185 179Google Scholar

    [19]

    Yamashita Y, Tsukizaki R, Nishiyama K 2021 Plasma Sources Sci. Technol. 30 095023Google Scholar

    [20]

    Gao Y, Fan W, Hu P, Liu H, Yu D 2020 Plasma Sources Sci. Technol. 29 095021Google Scholar

    [21]

    Yang Y R, Fu S H, Ding Z F 2022 AIP Adv. 12 055325Google Scholar

    [22]

    Li J, Fu S, Yang Y, Ding Z 2021 Plasma Sci. Technol. 23 085506Google Scholar

    [23]

    Fu S H, Ding Z F 2021 Phys. Plasmas 28 033510Google Scholar

    [24]

    Fu S H, Ding Z F 2021 Plasma Sources Sci. Technol. 30 125004Google Scholar

    [25]

    Ding Z F, Yang Y R, Fu S H 2023 AIP Adv. 13 095007Google Scholar

    [26]

    Fu S H, Tian L C, Ding Z F 2022 Plasma Sources Sci. Technol. 31 025004Google Scholar

    [27]

    Zeng M, Liu H, Huang H, Yu D 2023 Plasma Sources Sci. Technol. 32 095014Google Scholar

    [28]

    Chen F F, Arnush D 2001 Phys. Plasmas 8 5051Google Scholar

    [29]

    Sugai H, Ghanashev I, Mizuno K 2000 Appl. Phys. Lett. 77 3523Google Scholar

    [30]

    Bittencourt J A 2004 Fundamentals of Plasma Physics (New York: Springer New York) pp400–452

    [31]

    李鑫, 曾明, 刘辉, 宁中喜, 于达仁 2023 物理学报 72 225202Google Scholar

    Li X, Zeng M, Liu H, Ning Z X, Yu D R 2023 Acta Phys. Sin. 72 225202Google Scholar

  • [1] WU Jiahao, ZENG Ming, LIU Hui, YU Daren. Research on Mode Transition of Micro-Newton Cusped Field Hall Thruster. Acta Physica Sinica, 2026, 75(3): . doi: 10.7498/aps.75.20251214
    [2] LIANG Yuanyi, FANG Zhensong, HE Yafeng, LI Qing, HE Shoujie. Experiment and simulation on spatiotemporal microscopic dynamics of self-pulsing discharge in micro-hollow cathode. Acta Physica Sinica, 2025, 74(5): 055201. doi: 10.7498/aps.74.20241586
    [3] Lü Yu-Xi, Wang Chen, Duan Tian-Qi, Zhao Tong, Chang Peng-Fa, Wang An-Bang. Asymmetric transmission of cascaded acousto-optic device and whispering gallery mode microcavity. Acta Physica Sinica, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [4] Zhi Wen-Qiang, Fei Hong-Ming, Han Yu-Hui, Wu Min, Zhang Ming-Da, Liu Xin, Cao Bin-Zhao, Yang Yi-Biao. Unidirectional transmission of funnel-shaped waveguide with complete bandgap. Acta Physica Sinica, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [5] Yang Jia-Hao, Zhang Ao-Yan, Xia Chang-Ming, Deng Zhi-Peng, Liu Jian-Tao, Huang Zhuo-Yuan, Kang Jia-Jian, Zeng Hao-Ran, Jiang Ren-Jie, Mo Zhi-Feng, Hou Zhi-Yun, Zhou Gui-Yao. Preparation and mode conversion application of narrowband hollow-core anti-resonant fiber. Acta Physica Sinica, 2022, 71(13): 134207. doi: 10.7498/aps.70.20212194
    [6] Study on unidirectional transmission of funnel-shaped waveguide with complete bandgap. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211299
    [7] Zhou Yu, Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Xin Yu. Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, 69(8): 085201. doi: 10.7498/aps.69.20191864
    [8] Liu Hui, Jiang Wen-Jia, Ning Zhong-Xi, Cui Kai, Zeng Ming, Cao Xi-Feng, Yu Da-Ren. Cusped field thruster using different propellants. Acta Physica Sinica, 2018, 67(14): 145201. doi: 10.7498/aps.67.20180366
    [9] Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Wang Wei, Meng Xiang-Fu, Xie Zhi-Yong, Wang Shi-Ji. Diagnosis of high-Z plasma with soft X-ray laser probe. Acta Physica Sinica, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [10] Qing Shao-Wei, E Peng, Duan Ping. Effect of electron temperature anisotropy on plasma-wall interaction in Hall thruster. Acta Physica Sinica, 2012, 61(20): 205202. doi: 10.7498/aps.61.205202
    [11] Hao Peng, Wu Yi-Hui, Zhang Ping. Study of interaction of surface plasmon resonance sensor with nano-gold. Acta Physica Sinica, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [12] Niu Tian-Ye, Cao Jin-Xiang, Liu Lei, Liu Jin-Ying, Wang Yan, Wang Liang, Lü You, Wang Ge, Zhu Ying. The techniques of single probe and emission spectroscopy diagnostics in low temperature argon plasmas. Acta Physica Sinica, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [13] Xu Miao-Hua, Liang Tian-Jiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [14] CHI LING-FEI, LIN KUI-XUN, YAO RUO-HE, LIN XUAN-YING, YU CHU-YING, YU YUN-PENG. DIAGNOSTIC OF RF PLASMA BY USING LANGMUIR PROBE AND ITS NUMERICAL PROCESSING. Acta Physica Sinica, 2001, 50(7): 1313-1317. doi: 10.7498/aps.50.1313
    [15] YAO RUO-HE, CHI LING-FEI, LIN XUAN-YING, SHI WANG-ZHOU, LIN KUI-XUN. THE DIAGNOSTICS OF RF GLOW DISCHARGE PLASMA BY A PROBE AND ITS DATA PROCESS. Acta Physica Sinica, 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
    [16] YU WEI, XU ZHI-ZHAN, MA JIN-XIU, CHEN RONG-QING. DEVELOPMENT OF THREE-WAVE INTERACTIONS IN A PLASMA BEAT-WAVE ACCELERATOR. Acta Physica Sinica, 1993, 42(3): 431-436. doi: 10.7498/aps.42.431
    [17] ZHU WEN-HAO, ZHU NAN-QIANG, CHEN YUE-SHAN. PROBE DIAGNOSTICS OF THE ELECTRON ENERGY DISTRIBUTION FUNCTION IN A LOW PRESSURE RF PLASMA. Acta Physica Sinica, 1989, 38(2): 236-246. doi: 10.7498/aps.38.236
    [18] JIANG ZHI-MING, XU ZHI-ZHAN, CHEN SHI-SHENG, LIN LI-HUANG, ZHANG WEI-QING, QIAN AI-DI. INVESTIGATION OF LASER-PRODUCED PLASMA USING MULTI-FRAME OPTICAL PROBING DIAGNOSTICS. Acta Physica Sinica, 1988, 37(10): 1658-1663. doi: 10.7498/aps.37.1658
    [19] YU WEI, XU ZHI-ZHAN, CHEN ZE-ZUN. THE TWO MODE CONVERSION IN AN INHOMOGENEOUS MAGNETIZED PLASMA. Acta Physica Sinica, 1987, 36(3): 382-385. doi: 10.7498/aps.36.382
    [20] ZHU WEN-HAO, WU YI-FENG, CHEN YUE-SHAN. INFLUENCE OF THE HIGH FREQUENCY ELECTRIC FIELD ON THE PLASMA DIAGNOSTICS BY THE DOUBLE PROBE. Acta Physica Sinica, 1986, 35(11): 1426-1435. doi: 10.7498/aps.35.1426
Metrics
  • Abstract views:  201
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2025
  • Accepted Date:  15 October 2025
  • Available Online:  20 November 2025
  • Published Online:  05 December 2025
  • /

    返回文章
    返回