-
As a popular low-temperature plasma source, dielectric barrier discharge (DBD) has drawn significant attention due to its extensive application field including surface modification, material synthesis, sterilization, etc. DBD has presented different modes with varying experimental conditions. In order to address the formation mechanism of the different modes, a two-dimensional axis-symmetric fluid model is employed to simulate the characteristics of DBD in atmospheric pressure argon. Results indicate that DBD undergoes a scenario from a discretely-filamentary mode, a diffuse mode, a complementarily-filamentary mode, to a columnar mode with increasing voltage amplitude (Va) or discharge power (Pdis). Waveforms of applied voltage and discharge current indicate that for every discharge mode, the discharge current waveforms are always symmetrical for positive and negative discharge half-cycles. The discharge current exhibits single-pulse characteristics per half-cycle with low Va (or Pdis), and turns to double-pulse, triple-pulse, or multi-pulse characteristics per half-cycle with increasing Va (or Pdis). Spatial-temporal evolutions of electron density and electric field reveal that residual electrons play an important role in the discharge mode. Electric field (E) is mainly composed of its axial component, and its radial component only appears at the edge of the electrode in the diffuse mode. In the complementarily-filamentary mode, the locations of the strong-MDs and those of the weak-MDs alternate in the consecutive half-cycles. The strong-MD channels are stationary at fixed locations in the consecutive half-cycles for the columnar mode. In addition, the diameter of residual electrons in the columnar mode is larger than that in the filamentary mode. Moreover, the generation rate of Ar* increases, while the energy efficiency of the discharge shrinks with increasing Va (or Pdis). These results are of great significance for the deep understanding of discharge mode and the improving of DBD performance.
-
Keywords:
- dielectric barrier discharge /
- filamentary mode /
- diffuse mode /
- columnar mode
-
[1] Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102
[2] Rad R H, Brüser V, Brandenburg R 2024 Plasma Sources Sci. Technol. 33 025027
[3] Lu Y M, Ono R, A. Komuro 2024 Plasma Sources Sci. Technol. 33 04LT01
[4] Nguyen-Smith R T, Böddecker A, Schücke L, Bibinov N, Korolov I, Zhang Q Z, Mussenbrock T, Awakowicz P, Schulze J 2022 Plasma Sources Sci. Technol. 31 035008
[5] Galmiz O, Cimerman R, Pareek P, Janda M, Machala Z 2025 Plasma Sources Sci. Technol. 34 025011
[6] Chen M, Dong X P, Wu K Y, Ran J X, Jia P Y, Wu J C, Li X C 2024 Appl. Phys. Lett. 124 214102
[7] Ren C H, Huang B D, Zhang C, Qi B, Chen W J, Shao T 2023 Plasma Sources Sci. Technol. 32 025004
[8] Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005
[9] Mikheyev P A, Demyanov A V, Kochetov I V, Sludnova A A, Torbin A P, Mebel A M, Azyazov V N 2020 Plasma Sources Sci. Technol. 29 015012
[10] Liu F, Li S H, Zhao Y L, Akram S, Zhang L, Fang Z 2023 Plasma Sci. Technol. 25 104001
[11] Wang Z F, Liu L B, Liu D X, Zhu M Y, Chen J K, Zhang J Y, Zhang F G, Jiang J N, Guo L, Wang X H, Rong M Z 2022 Plasma Sources Sci. Technol. 31 05LT01
[12] Qiao J J, Yang Q, Wang D Z, Xiong Q 2023 Plasma Sources Sci. Technol. 32 11LT01
[13] Li X C, Zhang L L, Chen K, Ran J X, Pang X X, Jia P Y 2024 IEEE Trans. Plasma Sci. 52 1619-1630
[14] Zhang L L, Li T X, Pang X X, Ge Y Q, Liu X Q, Ran J X, Li Q, Li X C 2025 Acta Phys. Sin. 74 135201 (in Chinese) [张璐璐, 李天翔, 庞学霞, 葛禹琦, 刘晓倩, 冉俊霞, 李庆, 李雪辰 2025 物理学报 74 135201]
[15] Zhang L Y, Zhang Q Z, Mujahid Z, Neuroth C, Berger B, Schulze J 2024 Plasma Sources Sci. Technol. 33 105016
[16] Poramapijitwat P, Thana P, Boonyawan D, Janpong K, Kuensaen C, Charerntantanakul W, Yu L D, Sarapirom S 2020 Surf. Coat. Technol. 402 126482
[17] Wang J, Li J, Lei B Y, Ran S, Xu B P, Liu Y H, Li X Z, Wang Y S, Tang J, Zhao W, Duan Y X 2021 Plasma Sources Sci. Technol. 30 035012
[18] Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308
[19] Zhang J, Tang W W, Wang Y H, Wang D Z 2023 Plasma Sources Sci. Technol. 32 055005
[20] Raizer Y, Kisin V, Allen J 1991 Gas Discharge Physics
[21] Jovanović A P, Loffhagen D, Becker M M 2022 Plasma Sources Sci. Technol. 31 04LT02
[22] Ran J X, Chen Q Y, Zhou Y X, Tian S, Wu J C, Li P R, Li Q, Zhang X X, Li X C 2025 Plasma Process Polym. 22 e70023
[23] Akishev Y, Alekseeva T, Karalnik V, Petryakov A 2022 Plasma Sources Sci. Technol. 31 084001
[24] Bernecker B, Callegari T, Boeuf J P 2011 J. Phys. D: Appl. Phys. 44 262002
[25] Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23, 054003
[26] Hao Y P, Fang Q, Wan H R, Han Y Y, Yang L, Li L C 2019 Phys. Plasmas 26 073518
[27] Wan H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203 (in Chinese) [万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 物理学报 69 145203]
[28] Massines F, Gherardi N, Naudé N, Ségur P 2009 Eur. Phys. J. Appl. Phys. 47 22805
[29] Soloviev V R, Anokhin E M, Aleksandrov N L 2020 Plasma Sources Sci. Technol. 29 035006
[30] Bajon C, Dap S, Belinger A, Guaitella O, Hoder T, Naudé N 2023 Plasma Sources Sci. Technol. 32 045012
[31] Steuer D, van Impel H, Labenski R, Schulz-von der Gathen V, Böke M, Golda J 2025 J. Phys. D: Appl. Phys. 58 085211
[32] Wang Y Y, Yan H J, Guo H F, Xu Y F, Zhang Q Z, Song J 2021 Plasma Sources Sci. Technol. 30 075009
[33] Huang Z M, Hao Y P, Yang L, Han Y X, Li L C 2015 Phys. Plasmas 22 123509
[34] Jiang W M, Li J, Tang J, Wang Y S, Zhao W, Duan Y X 2015 Sci. Rep. 5 16391
[35] Ráhel J, Síra M, Stahel P, Trunec D 2007 Contrib. Plasma Phys. 47 34-39
[36] Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003
[37] Urabe K, Yamada K, Sakai O 2011 Jpn. J. Appl. Phys. 50 116002
[38] Sublet A, Ding C, Dorier J L, Hollenstein C, Fayet P, Coursimault F 2006 Plasma Sources Sci. Technol. 15 627-634
[39] Fang Z, Lin J, Xie X, Qiu Y, Kuffel E 2009 J. Phys. D: Appl. Phys. 42 085203
[40] Li X C, Zhang Q, Jia P Y, Chu J D, Zhang P P, Dong L F 2017 Phys. Plasmas 24 033505
[41] Pinchuk M E, Stepanova O M, Gromov M, Leys C, Nikiforov A 2020 Appl. Phys. Lett. 116 164102
[42] Fan Z H, Qi H C, Liu Y D, Yan H J, Ren C S 2016 Phys. Plasmas 23 123520
[43] Chiper A S, Anita V, Agheorghiesei C, Pohoata V, Anita M, Popa G 2004 Plasma Process Polym. 1 57-62
[44] Ran J X, Zhang X X, Zhang Y, Wu KY, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403
[45] Lou Y Q, Tang J F, Gu H Y, Zhou D S 2025 J. Electrostat. 134 104016
[46] Hao Y P, Zheng B, Liu Y G 2014 Phys. Plasmas 21 013503
[47] Hao Y P, Han Y Y, Huang Z M, Yang L, Dai D, Li L C 2018 Phys. Plasmas 25 013516
[48] Wan J, Wang Q, Dai D, Ning W J 2019 Phys. Plasmas 26 103510
[49] Crispim L W S, da Silva C D, Amorim J, Ballester M Y 2024 Phys. Scr. 99 065521
[50] Ren C H, He X R, Jia P Y, Wu K Y, Li X C 2020 Phys. Plasmas 27 113507
[51] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722-733
[52] Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023
[53] Wang J, Lei B Y, Li J, Xu Y G, Wang Y S, Tang J, Zhao W, Duan Y X 2020 Phys. Plasmas 27 043501
[54] Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 61 245205 (in Chinese) [张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 物理学报 61 245205]
[55] Li X C, Ren C H, He X R, Wu K Y, Jia P Y, Li S Z 2020 Plasma Process Polym. 17 e1900228
[56] Moravej M, Yang X, Barankin M, Penelon J, Babayan S E, Hicks R F 2006 Plasma Sources Sci. Technol. 15 204-210
[57] Vitello P A, Penetrante B M, Bardsley J N 1994 Phys. Rev. E 49 5574-5598
[58] Shirafuji T, Kitagawa T, Wakai T, Tachibana K 2003 Appl. Phys. Lett. 83 2309-2311
[59] Takaki K, Nawa K, Mukaigawa S, Fujiwara T, Aizawa T 2008 IEEE Trans. Plasma Sci. 36 1260-1261
[60] Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517
[61] Li X C, Liu R, Jia P Y, Wu K Y, Ren C H, Kang P C, Jia B Y, Li Y R 2018 Phys. Plasmas 25, 073510
[62] Wang J, Li J, Lei B Y, Xing Y F, Xu B P, Liu Y H, Li X Z, Wang Y S, Tang J, Zhao W, Duan Y X 2020 Phys. Plasmas 27 073503
[63] Li X C, Ge Y Q, Wan W J, Zhang X X, Sun H, Ran J X, Pang X X, Wu K Y, Jia P Y 2025 Phys. Scr. 100 075602
[64] Li X C, Wan W J, Liu X Q, Chen M, Wu K Y, Ran J X, Pang X X, Zhang X X, Wu J C, Jia P Y, Sun H 2025 Chin. Phys. B 34 035202
[65] Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J T 2019 J. Phys. D: Appl. Phys. 52 205201
[66] Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Control. Fusion 47 B577–B588
[67] Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C, Wang L M 2007 Appl. Phys. Lett. 91 221504
[68] Jia P Y, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y, Li X C 2021 Plasma Sources Sci. Technol. 30 095021
[69] Jodzis S, Zieba M 2018 Vacuum 155 29-37
Metrics
- Abstract views: 61
- PDF Downloads: 7
- Cited By: 0









下载: