搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极低温散粒噪声测试系统及隧道结噪声测量

宋志军 吕昭征 董全 冯军雅 姬忠庆 金勇 吕力

引用本文:
Citation:

极低温散粒噪声测试系统及隧道结噪声测量

宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力

Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures

Song Zhi-Jun, Lü Zhao-Zheng, Dong Quan, Feng Jun-Ya, Ji Zhong-Qing, Jin Yong, Lü Li
PDF
HTML
导出引用
  • 介观体系输运过程中载流子的离散性导致了散粒噪声. 通过测量散粒噪声可以得到传统的基于时间平均值的电导测量无法得到的随时间涨落信息, 因而作为一种重要手段在极低温量子输运研究中得到了一定的应用. 极低温环境下的噪声测量是一种难度很大的极端条件下的微弱信号测量, 通常需要在低温端安装前置放大器并且尽量靠近待测器件以提高测量信噪比和带宽, 因此对放大器的噪声水平和功耗都有严格的要求. 提出了在稀释制冷机内搭建的散粒噪声测量系统, 以及利用此套系统得到了在mK温区超导隧道结散粒噪声的测量结果. 自行研制的高电子迁移率晶体管低温前置放大器采用整体封装, 便于安装在商用干式稀释制冷机的4 K温区, 本底电压噪声为0.25 nV/√Hz, 功耗仅为0.754 mW. 通过对隧道结进行散粒噪声测量, 得到的Fano因子和理论计算吻合.
    Traditionally, electrical noise is considered as an interference source for low level measurements. Shot noise is the current fluctuation caused by the discreteness of electrons. In a mesoscopic system, shot noise is sensitive to the interaction of charge carriers. Since the 20th century, it has been found that the shot noise measurement can provide the information about quantum fluctuations, which cannot be measured with traditional transport measurement method. It is usually difficult to measure weak noise signal at ultra- low temperature due to technical difficulties. It is necessary to mount a cryogenic preamplifier close to the sample to improve signal-to-noise ratio and to increase the bandwidth. Therefore, the ultra-low background noise and the power consumption of the amplifier should be used. In this report we present a shot noise measurement system at dilution refrigerator temperatures. We also introduce and analyze the noise model of our shot noise measurement system. With customized high electron mobility transistors, we make a series of ultra-low noise cryogenic preamplifiers. All the electronic components of the amplifier are packed into a shielding box, which makes the installation of the cryogenic amplifier more convenient. The amplifier is mounted on the 4 K stage of a dry dilution refrigerator and the total power consumption is less than 0.754 mW. The gains and the background noises of the amplifiers are calibrated with the Johnson-Nyquist noise of the combination of a superconducting resistor and a normal resistor at various temperatures. The measured input referred noise voltage can be as low as 0.25 nV/√Hz. In this report, the performance of the system is demonstrated by the shot noise measurement of an Al/AlOx/Al tunnel junction at various temperatures. Above the superconducting transition temperature of aluminum, the measured Fano factor of the system is very close to 1, which is in a good agreement with the theory prediction.
      通信作者: 姬忠庆, zji@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2016YFA0300600)和国家自然科学基金(批准号: 11574379, 11174357)资助的课题.
      Corresponding author: Ji Zhong-Qing, zji@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0300600) and the National Natural Science Foundation of China (Grant Nos. 11574379, 11174357).
    [1]

    Landauer R 1998 Nature 392 658Google Scholar

    [2]

    Schottky W 1918 Ann. Phys. 57 541

    [3]

    Beenakker C, Schönenberger C 2003 Phys. Today 56 37

    [4]

    Blanter Y M, Büttiker M 2000 Phys. Rep. 336 1Google Scholar

    [5]

    Lesovik G B 1989 JETP Lett. 49 513

    [6]

    Buttiker M 1990 Phys. Rev. Lett. 65 2901Google Scholar

    [7]

    Beenakker C W J, Büttiker M 1992 Phys. Rev. B 46 1889Google Scholar

    [8]

    Reznikov M, Heiblum M, Shtrikman H, Mahalu D 1995 Phys. Rev. Lett. 75 3340Google Scholar

    [9]

    Kumar A, Saminadayar L, Glattli D C 1996 Phys. Rev. Lett. 76 2778Google Scholar

    [10]

    Picciotto R D, Reznikov M, Heiblum M, Umansky V, Bunin G, Mahalu D 1997 Nature 389 162Google Scholar

    [11]

    Saminadayar L, Glattli D C, Jin Y, Etienne B 1997 Phys. Rev. Lett. 79 2526Google Scholar

    [12]

    Reznikov M, de Picciotto R, Griffiths T G, Heiblum M, Umansky V 1999 Nature 399 238Google Scholar

    [13]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [14]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [15]

    Zhang H, Liu C X, Gazibegovic S, Xu D, Logan J A, Wang G, van Loo N, Bommer J D S, de Moor M W A, Car D, Op Het Veld R L M, van Veldhoven P J, Koelling S, Verheijen M A, Pendharkar M, Pennachio D J, Shojaei B, Lee J S, Palmstrom C J, Bakkers E, Sarma S D, Kouwenhoven L P 2018 Nature 556 74Google Scholar

    [16]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [17]

    Sbierski B, Pohl G, Bergholtz E J, Brouwer P W 2014 Phys. Rev. Lett. 113 026602Google Scholar

    [18]

    Trescher M, Sbierski B, Brouwer P W, Bergholtz E J 2015 Phys. Rev. B 91 115135Google Scholar

    [19]

    Matveeva P G, Aristov D N, Meidan D, Gutman D B 2017 Phys. Rev. B 96 165406Google Scholar

    [20]

    Yang Y L, Bai C X, Xu X G, Jiang Y 2018 Nanotechnology 29 074002Google Scholar

    [21]

    Golub A, Horovitz B 2011 Phys. Rev. B 83 153415Google Scholar

    [22]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002Google Scholar

    [23]

    Soller H, Komnik A 2014 Physica E 63 99Google Scholar

    [24]

    Bolech C J, Demler E 2008 Physica B 403 994Google Scholar

    [25]

    Akhmerov A R, Dahlhaus J P, Hassler F, Wimmer M, Beenakker C W 2011 Phys. Rev. Lett. 106 057001Google Scholar

    [26]

    Lü H F, Guo Z, Ke S S, Guo Y, Zhang H W 2015 J. Appl. Phys. 117 164312Google Scholar

    [27]

    DiCarlo L, Zhang Y, McClure D T, Marcus C M, Pfeiffer L N, West K W 2006 Rev. Sci. Instrum. 77 073906Google Scholar

    [28]

    Hashisaka M, Nakamura S, Yamauchi Y, Kasai S, Kobayashi K, Ono T 2008 Phys. Status Solidi C 5 182Google Scholar

    [29]

    Arakawa T, Nishihara Y, Maeda M, Norimoto S, Kobayashi K 2013 Appl. Phys. Lett. 103 172104Google Scholar

    [30]

    Robinson A M, Talyanskii V I 2004 Rev. Sci. Instrum. 75 3169Google Scholar

    [31]

    Ronen Y, Cohen Y, Kang J H, Haim A, Rieder M T, Heiblum M, Mahalu D, Shtrikman H 2016 Proc. Natl Acad. Sci. USA 113 1743Google Scholar

    [32]

    陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚 2011 物理学报 60 050704Google Scholar

    Chen W H, Du L, Zhuang Y Q, Bao J L, He L, Chen H, Sun P, Wang T L 2011 Acta Phys. Sin. 60 050704Google Scholar

    [33]

    Yang W H, Wei J 2018 Chin. Phys. B 27 060702Google Scholar

    [34]

    Dong Q, Liang Y X, Ferry D, Cavanna A, Gennser U, Couraud L, Jin Y 2014 Appl. Phys. Lett. 105 013504Google Scholar

    [35]

    Hashisaka M, Yamauchi Y, Nakamura S, Kasai S, Kobayashi K, Ono T 2008 J. Phys.: Conf. Ser. 109 012013Google Scholar

    [36]

    Dicarlo L, Williams J R, Zhang Y, McClure D T, Marcus C M 2008 Phys. Rev. Lett. 100 156801Google Scholar

  • 图 1  低温低噪声放大器的电路图(a)和实物图(b)

    Fig. 1.  Circuit diagram (a) and picture (b) of a cryogenic low noise amplifier.

    图 2  (a)低温放大器增益-频率曲线; (b)低温放大器等效输入电压噪声

    Fig. 2.  (a) Gain of the cryogenic amplifier with frequency; (b) equivalent input voltage noise of the cryogenic amplifier.

    图 3  牛津干式稀释制冷机Triton200散粒噪声测量系统(LC谐振中心频率为765 kHz)

    Fig. 3.  Shot noise measurement system of Oxford dry dilution refrigerator Triton200(Center frequency of LC resonance circuit is 765 kHz).

    图 4  测量系统交流噪声模型

    Fig. 4.  Circuit AC noise model used for measurement system.

    图 5  (a) 10 kΩ TaN电阻随温度变化; (b) TaN电阻与镍铬金属膜电阻构成的网络的热噪声测量的示意图

    Fig. 5.  (a) Resistance of 10 kΩ TaN resistor as a function of temperature; (b) schematic diagram of thermal noise measurement of a network composed of TaN resistor and nickel chromium metal film.

    图 6  r = 10, 20 kΩ时PSD随着温度的变化

    Fig. 6.  Variation of PSD with temperature when r = 10, 20 kΩ.

    图 7  4 K温度下, Al-AlOx-Al隧道结的dV/dI随着直流偏置I的变化(内嵌图为隧道结SEM图)

    Fig. 7.  Differential resistance of an Al-AlOx-Al tunneling junction as a function of DC current I at 4 K(Inset: SEM image of a tunneling junction).

    图 8  (a) 4 K温度下, 输出的PSD随着频率f以及直流电流I的变化; (b)不同温度下, 中心频率765 kHz处输出的PSD随着直流电流I的变化

    Fig. 8.  (a) Variation of PSD with frequency f and DC current I at 4 K; (b) variation of PSD at 765 kHz with DC current I at different temperatures.

    图 9  不同温度下, Al–AlOx–Al隧道结的散粒噪声Si随直流电流I的变化及拟合曲线

    Fig. 9.  Shot noise Si of Al–AlOx–Al tunneling junction with DC current I at different temperatures and fitting curves.

    图 10  (a) 20 mK下, Al–AlOx–Al的微分电阻dV/dI随着直流偏置I的变化以及VI曲线; (b) 20 mK下, Al–AlOx–Al的Fano因子F随着直流偏置I的变化

    Fig. 10.  (a) Differential resistance dV/dI of Al–AlOx–Al junction vs. DC current I at 20 mK and V-I curve at 20 mK; (b) fano factor F of Al–AlOx–Al junction vs. DC current I at 20 mK.

    表 1  不同课题组及公司的低温放大器功耗和本底电压噪声对比

    Table 1.  Comparison of power consumption and background noises of different cryogenic amplifiers made by different groups and companies.

    课题组或公司放大器
    电路分布
    功耗/mW本底电压噪声/nV·Hz–1/2
    DiCarlo课题组[27]分立1.80.4
    Robinson课题组[30]分立0.50.7
    Arakawa课题组[29]集成41
    Stahl-electronics公司集成130.25
    笔者课题组集成0.7540.25
    下载: 导出CSV

    表 2  不同架构的低温放大器参数对比

    Table 2.  Comparison of our home-made cryogenic amplifiers.

    放大器架构HEMT类型增益/倍功耗/mW带宽1/f噪声的拐角等效输入电压噪声/nV·Hz–1/2
    共源极 + 源极跟随ATF3314315.83.56810 Hz—20 MHz300 kHz0.45
    共源极定制*100.75410 Hz—1 MHz3 kHz0.25
    共源共栅 + 源极跟随定制*253500 Hz—20 MHz30 kHz0.17
    注: *表示由法国国家科学院纳米科学与技术中心金勇课题组提供的HEMT
    下载: 导出CSV

    表 3  不同温度下, 拟合得到的Fano因子

    Table 3.  Fano factors are obtained by fitting the test data at different temperature.

    T/K46810121416
    F0.948270.950850.951150.981940.971130.990880.96408
    下载: 导出CSV
  • [1]

    Landauer R 1998 Nature 392 658Google Scholar

    [2]

    Schottky W 1918 Ann. Phys. 57 541

    [3]

    Beenakker C, Schönenberger C 2003 Phys. Today 56 37

    [4]

    Blanter Y M, Büttiker M 2000 Phys. Rep. 336 1Google Scholar

    [5]

    Lesovik G B 1989 JETP Lett. 49 513

    [6]

    Buttiker M 1990 Phys. Rev. Lett. 65 2901Google Scholar

    [7]

    Beenakker C W J, Büttiker M 1992 Phys. Rev. B 46 1889Google Scholar

    [8]

    Reznikov M, Heiblum M, Shtrikman H, Mahalu D 1995 Phys. Rev. Lett. 75 3340Google Scholar

    [9]

    Kumar A, Saminadayar L, Glattli D C 1996 Phys. Rev. Lett. 76 2778Google Scholar

    [10]

    Picciotto R D, Reznikov M, Heiblum M, Umansky V, Bunin G, Mahalu D 1997 Nature 389 162Google Scholar

    [11]

    Saminadayar L, Glattli D C, Jin Y, Etienne B 1997 Phys. Rev. Lett. 79 2526Google Scholar

    [12]

    Reznikov M, de Picciotto R, Griffiths T G, Heiblum M, Umansky V 1999 Nature 399 238Google Scholar

    [13]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [14]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [15]

    Zhang H, Liu C X, Gazibegovic S, Xu D, Logan J A, Wang G, van Loo N, Bommer J D S, de Moor M W A, Car D, Op Het Veld R L M, van Veldhoven P J, Koelling S, Verheijen M A, Pendharkar M, Pennachio D J, Shojaei B, Lee J S, Palmstrom C J, Bakkers E, Sarma S D, Kouwenhoven L P 2018 Nature 556 74Google Scholar

    [16]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [17]

    Sbierski B, Pohl G, Bergholtz E J, Brouwer P W 2014 Phys. Rev. Lett. 113 026602Google Scholar

    [18]

    Trescher M, Sbierski B, Brouwer P W, Bergholtz E J 2015 Phys. Rev. B 91 115135Google Scholar

    [19]

    Matveeva P G, Aristov D N, Meidan D, Gutman D B 2017 Phys. Rev. B 96 165406Google Scholar

    [20]

    Yang Y L, Bai C X, Xu X G, Jiang Y 2018 Nanotechnology 29 074002Google Scholar

    [21]

    Golub A, Horovitz B 2011 Phys. Rev. B 83 153415Google Scholar

    [22]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002Google Scholar

    [23]

    Soller H, Komnik A 2014 Physica E 63 99Google Scholar

    [24]

    Bolech C J, Demler E 2008 Physica B 403 994Google Scholar

    [25]

    Akhmerov A R, Dahlhaus J P, Hassler F, Wimmer M, Beenakker C W 2011 Phys. Rev. Lett. 106 057001Google Scholar

    [26]

    Lü H F, Guo Z, Ke S S, Guo Y, Zhang H W 2015 J. Appl. Phys. 117 164312Google Scholar

    [27]

    DiCarlo L, Zhang Y, McClure D T, Marcus C M, Pfeiffer L N, West K W 2006 Rev. Sci. Instrum. 77 073906Google Scholar

    [28]

    Hashisaka M, Nakamura S, Yamauchi Y, Kasai S, Kobayashi K, Ono T 2008 Phys. Status Solidi C 5 182Google Scholar

    [29]

    Arakawa T, Nishihara Y, Maeda M, Norimoto S, Kobayashi K 2013 Appl. Phys. Lett. 103 172104Google Scholar

    [30]

    Robinson A M, Talyanskii V I 2004 Rev. Sci. Instrum. 75 3169Google Scholar

    [31]

    Ronen Y, Cohen Y, Kang J H, Haim A, Rieder M T, Heiblum M, Mahalu D, Shtrikman H 2016 Proc. Natl Acad. Sci. USA 113 1743Google Scholar

    [32]

    陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚 2011 物理学报 60 050704Google Scholar

    Chen W H, Du L, Zhuang Y Q, Bao J L, He L, Chen H, Sun P, Wang T L 2011 Acta Phys. Sin. 60 050704Google Scholar

    [33]

    Yang W H, Wei J 2018 Chin. Phys. B 27 060702Google Scholar

    [34]

    Dong Q, Liang Y X, Ferry D, Cavanna A, Gennser U, Couraud L, Jin Y 2014 Appl. Phys. Lett. 105 013504Google Scholar

    [35]

    Hashisaka M, Yamauchi Y, Nakamura S, Kasai S, Kobayashi K, Ono T 2008 J. Phys.: Conf. Ser. 109 012013Google Scholar

    [36]

    Dicarlo L, Williams J R, Zhang Y, McClure D T, Marcus C M 2008 Phys. Rev. Lett. 100 156801Google Scholar

  • [1] 黄馨雨, 张晋新, 王信, 吕玲, 郭红霞, 冯娟, 闫允一, 王辉, 戚钧翔. 基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究. 物理学报, 2024, 73(12): 126103. doi: 10.7498/aps.73.20240307
    [2] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [3] 李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会. SiGe BiCMOS低噪声放大器激光单粒子效应研究. 物理学报, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [4] 付柏山, 廖奕, 周俊. 稀释制冷机及其中的热交换问题. 物理学报, 2021, 70(23): 230202. doi: 10.7498/aps.70.20211760
    [5] 蓝康, 杜倩, 康丽莎, 姜露静, 林振宇, 张延惠. 基于量子点接触的开放双量子点系统电子转移特性. 物理学报, 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [6] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [7] 颜志猛, 王静, 郭健宏. Majorana零模式的电导与低压振荡散粒噪声. 物理学报, 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [8] 周洋, 郭健宏. 双量子点结构中Majorana费米子的噪声特性. 物理学报, 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [9] 吴少兵, 陈实, 李海, 杨晓非. TMR与GMR传感器1/f噪声的研究进展. 物理学报, 2012, 61(9): 097504. doi: 10.7498/aps.61.097504
    [10] 贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪. 准弹道输运纳米MOSFET散粒噪声的抑制研究. 物理学报, 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [11] 唐冬和, 杜磊, 王婷岚, 陈华, 陈文豪. 纳米尺度MOSFET过剩噪声的定性分析. 物理学报, 2011, 60(10): 107201. doi: 10.7498/aps.60.107201
    [12] 陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚. 电子器件散粒噪声测试方法研究. 物理学报, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [13] 施振刚, 文伟, 谌雄文, 向少华, 宋克慧. 双量子点电荷比特的散粒噪声谱. 物理学报, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [14] 梁志鹏, 董正超. 半导体/磁性d波超导隧道结中的散粒噪声. 物理学报, 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [15] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究. 物理学报, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [16] 陈 华, 杜 磊, 庄奕琪. 相干介观系统中散粒噪声的Monte Carlo模拟方法研究. 物理学报, 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [17] 安兴涛, 李玉现, 刘建军. 介观物理系统中的噪声. 物理学报, 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [18] 匡登峰, 刘庆纲, 胡小唐, 胡留长, 郭维廉. 纳米隧道结的制备和特性研究. 物理学报, 2006, 55(1): 80-83. doi: 10.7498/aps.55.80
    [19] 张志勇, 王太宏. 用散粒噪声测量碳纳米管中Luttinger参数. 物理学报, 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [20] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声. 物理学报, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
计量
  • 文章访问数:  10301
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-21
  • 修回日期:  2019-02-16
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回