-
由loop代数的一个子代数出发,构造了一个线性等谱问题,再利用屠格式计算出了一类Liouvelle意义下的可积系统及其双Hamilton结构,作为该可积系统的约化,得到了著名的Schrdinger方程和mKdV方程,因此称该系统为S-mKdV方程族.根据已构造的的子代数,又构造了维数为5的loop代数的一个新的子代数,由此出发设计了一个线性等谱形式,再利用屠格式求得了S-mKdV方程族的一类扩展可积模型.利用这种方法还可以求BPT方程族、TB方程族等谱系的扩展可积模型.因此本方法具有普遍应用价值.最后作为特例,求得了著名的Schrdinger方程和mKdV方程的可积耦合系统.
-
关键词:
- loop代数 /
- Hamilton结构 /
- 扩展可积模型 /
- Schrdinger方程 /
- mKdV方程
引用本文: |
Citation: |
计量
- 文章访问数: 3272
- PDF下载量: 661
- 被引次数: 0